Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là abcdef
a có 4 cách chọn
+ với a = { 1,2,3}
b có 5 cách chọn
c có 4 cách chọn
d có 3 cách chọn
e có 2 cách chọn
f có 1 cách chọn
\(\Rightarrow\) có 360 số
+ với a = 4
b có 3 cách chọn
b={ 1,2}
c có 4 cách chọn
d có́ 3 cách chọn
e có 2 cách choṇ
f có 1 cách chọn
b =3
c có 1 cách chọn
d có 3 cách chọn
e có 2 cách chọn
f có 1 cách chọn
\(\Rightarrow\)có 54 số
vậy có 360 + 54 = 414 số
Gọi số cần lập là \(\overline{abcd}\)
TH1: \(a=1\)
\(\Rightarrow\) Bộ bcd có \(A_6^3=120\) số
TH2: \(a=2\Rightarrow b=0\) \(\Rightarrow c=1\)
d có 4 cách chọn \(\Rightarrow4\) số
\(\Rightarrow120+4=124\) số
Gọi số tự nhiên cần tìm có dạng \(\overline{abcde}\)
Do a chỉ thuộc {1;2} nên ta chia 2 trường hợp
Trường hợp a=2(b<5):
b có 5 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó với trường hợp a=2 ta có: 5.5.4.3=300(cách)
Trường hợp a=1:
b có 6 cách chọn
c có 5 cách chọn
d có 4 cách chọn
e có 3 cách chọn
Do đó trường hợp a=1 có 6.5.4.3=360(cách)
Từ đó để lập được các số tự nhiên thõa đề có: 300+360=660(cách)
Bạn có thể kiểm tra kỹ lại, trong quá trình làm có thể có sai xót về số nhưng hướng làm thì ổn rồi
Vậy số cách để lập số có 6 chữ số khác nhau sao cho tổng ba số đầu nhỏ hơn tổng ba số cuối một đơn vị là:
TH1: Số cần lập có dạng \(520\overline{ab}\)
Chọn a;b có \(A^2_4\) cách
TH2 : Số cần lập có dạng : \(50\overline{abc}\)
Chọn a;b;c có \(A^3_5\) cách
TH3: Số cần lập có dạng : \(\overline{abcde}\left(a\ne5\right)\)
Chọn a: 2 cách
Chọn b;c;d;e có \(A^4_6\) cách
Vậy lập được tất cả \(A^2_4+A^3_5+2A^4_6=792\) số
Ta có 1+2+3+4+5+6+ =21 Vậy tổng của 3 chữ số đầu là 10
Dễ thấy 1+3+6 = 1+4+5 = 2+3+5
Vậy có 3 cách chọn 3 nhóm 3 chữ số đầu (1,3,6 hoặc 1,4,5 hoặc 2,3,5)
Với 1 cách chọn nhóm 3 chữ số thì có 3! cách để lập ra số \(\overline{a_1a_2a_3}\)
Với 3 số còn lại thì có 3! cách để lập ra số \(\overline{a_4a_5a_6}\)
(ở đây \(\overline{a_1a_2a_3a_4a_5a_6}\) là số thỏa mãn yêu cầu đề ra)
Theo quy tắc nhân ta có 3.6.6 = 108
Vậy có 108 số cần tìm
Em thấy như này còn thiều trường hợp hay sao ý ạ tại ba số nhỏ hơn đâu nhất thiết phải bằng 10 ạ 123 vs 345 vẫn tỏa mãn đấy chứ ạ.Có thể cho em là mình sai ở đâu hay kế quả thế nào được không ạ??
Gọi các số cần tìm có dạng tổng quát là abc
Dựa vào các chữ số, lập được:
a có 3 cách chọn chữ số hàng trăm vì 0<a<5 => a= {1;2;3}
b có 8 cách chọn chữ số hàng chục - tất cả các số trên đều có đủ điều kiện để là c/s hàng chục
c có 8 cách chọn chữ số hàng đơn vị - tất cả các số trên đều có đủ điều kiện để là c/s hàng đơn vị
Bạn lập như thế với các số có dạng 5ab với a<2 và b<6 nhé!
=> Lập được các số để thỏa mãn ycđb là: 3x8x8+?= ? số
_HT_