Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Tọa độ A là:
\(\left\{{}\begin{matrix}x=0\\y=\left(m+1\right)\cdot x+3=0\left(m+1\right)+3=3\end{matrix}\right.\)
Vậy: A(0;3)
2: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\\left(m+1\right)x+3=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(m+1\right)=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{m+1}\end{matrix}\right.\)
=>\(B\left(\dfrac{-3}{m+1};0\right)\)
\(OB=\sqrt{\left(-\dfrac{3}{m+1}-0\right)^2+\left(0-0\right)^2}=\dfrac{3}{\left|m+1\right|}\)
\(OA=\sqrt{\left(0-0\right)^2+\left(3-0\right)^2}=3\)
OA=2OB
=>\(3=\dfrac{6}{\left|m+1\right|}\)
=>|m+1|=2
=>\(\left[{}\begin{matrix}m+1=2\\m+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)
a: (d): y=(m-1)x+m-3
Thay x=0 và y=1 vào (d), ta được:
0(m-1)+m-3=1
=>m-3=1
=>m=4
b: Tọa độ A là;
\(\left\{{}\begin{matrix}x=0\\y=0\left(m-1\right)+m-3=m-3\end{matrix}\right.\)
=>OA=|m-3|
Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\x\left(m-1\right)+m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{-m+3}{m-1}\end{matrix}\right.\)
=>\(OB=\left|\dfrac{m-3}{m-1}\right|=\dfrac{\left|m-3\right|}{\left|m-1\right|}\)
ΔOAB vuông cân tại O
=>\(\left|m-3\right|=\dfrac{\left|m-3\right|}{\left|m-1\right|}\)
=>\(\left|m-3\right|\left(1-\dfrac{1}{\left|m-1\right|}\right)=0\)
=>m-3=0 hoặc m-1=1 hoặc m-1=-1
=>m=3 hoặc m=2 hoặc m=0
Theo Cô si 4x+\frac{1}{4x}\ge24x+4x1≥2 , đẳng thức xảy ra khi và chỉ khi 4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}4x=4x1=1⇔x=41). Do đó
A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016A≥2−x+14x+3+2016
A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014A≥4−x+14x+3+2014
A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014A≥x+14x−4x+1+2014=x+1(2x−1)2+2014≥2014
Hơn nữa A=2014A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.{x=412x−1=0 \Leftrightarrow x=\dfrac{1}{4}⇔x=41 .
Vậy GTNN = 2014
b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi
Khi đó 2 nghiệm của phương trình là:
Kẻ BB' ⊥ OM ; AA' ⊥ OM
Ta có:
S A O M = 1/2 AA'.OM ; S B O M = 1/2 BB'.OM
Theo bài ra:
Do m > 0 nên m = 8
Vậy với m = 8 thì thỏa mãn điều kiện đề bài.
\(\left(d\right)\text{//}\left(d;\right)\Leftrightarrow\left\{{}\begin{matrix}m-1=\dfrac{1}{m-1}\\4\ne m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)^2=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=0\)
PT giao Ox: \(y=0\Leftrightarrow x=-\dfrac{4}{m-1}\Leftrightarrow A\left(-\dfrac{4}{m-1};0\right)\Leftrightarrow OA=\dfrac{4}{\left|m-1\right|}\)
PT giao Oy: \(x=0\Leftrightarrow y=4\Leftrightarrow B\left(0;4\right)\Leftrightarrow OB=4\)
\(S_{AOB}=2\Leftrightarrow\dfrac{1}{2}OA\cdot OB=2\Leftrightarrow OA\cdot OB=4\\ \Leftrightarrow\dfrac{4}{\left|m-1\right|}\cdot4=4\\ \Leftrightarrow\left|m-1\right|=\dfrac{1}{4}\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{5}{4}\\m=\dfrac{3}{4}\end{matrix}\right.\)
1: Thay x=0 và y=4 vào (d), ta được:
\(0\left(m^2+1\right)+m+2=4\)
=>m+2=4
=>m=2
2: tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x\left(m^2+1\right)+m+2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-m-2}{m^2+1}\\y=0\end{matrix}\right.\)
Tọa độ B là: \(\left\{{}\begin{matrix}x=0\\y=0\left(m^2+1\right)+m+2=m+2\end{matrix}\right.\)
vậy: O(0;0); \(A\left(\dfrac{-m-2}{m^2+1};0\right);B\left(0;m+2\right)\)
\(OA=\sqrt{\left(\dfrac{-m-2}{m^2+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\dfrac{\left(m+2\right)}{m^2+1}}^2=\dfrac{\left|m+2\right|}{m^2+1}\)
\(OB=\sqrt{\left(0-0\right)^2+\left(m+2-0\right)^2}=\sqrt{0^2+\left(m+2\right)^2}=\left|m+2\right|\)
Vì Ox\(\perp\)Oy nên ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot\dfrac{\left(m+2\right)^2}{m^2+1}\)
Để \(S_{OBA}=\dfrac{1}{2}\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m+2\right)^2}{m^2+1}=\dfrac{1}{2}\)
=>\(\dfrac{\left(m+2\right)^2}{m^2+1}=1\)
=>\(\left(m+2\right)^2=m^2+1\)
=>\(m^2+4m+4=m^2+1\)
=>4m+4=1
=>4m=-3
=>\(m=-\dfrac{3}{4}\)