Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
uBC(6;0)=>nAH(0,6) ( vì AH vuông góc với BC)
PTTQ của đg thẳng AH đi qua A là
\(0\left(x-3\right)+6\left(y-0\right)=0< =>6y=0\)
b)\(d\left(C;AH\right)=R=\dfrac{\left|6.1\right|}{\sqrt[]{0^2+6^2}}=1\)
PT đg tròn tầm C tiếp xúc AH là
\(\left(x-4\right)^2+\left(y-1\right)^2=1^2\)
a.
\(\overrightarrow{BC}=\left(2;-3\right)\Rightarrow\) đường thẳng BC nhận (3;2) là 1 vtpt
Phương trình BC:
\(3\left(x-2\right)+2\left(y-3\right)=0\Leftrightarrow3x+2y-12=0\)
b.
Gọi G là trọng tâm ABC \(\Rightarrow G\left(\dfrac{7}{3};\dfrac{4}{3}\right)\)
(C) tiếp xúc BC \(\Leftrightarrow d\left(G;BC\right)=R\)
\(\Rightarrow R=\dfrac{\left|3.\dfrac{7}{3}+2.\dfrac{4}{3}-12\right|}{\sqrt{3^2+2^2}}=\dfrac{7\sqrt{13}}{39}\)
Phương trình: \(\left(x-\dfrac{7}{3}\right)^2+\left(y-\dfrac{4}{3}\right)^2=\dfrac{49}{117}\)
a) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right)\)\( \Rightarrow \)VTPT của đường thẳng BC là \(\overrightarrow {{n_{BC}}} = (4;3)\)
PT đường thẳng BC qua \(B(1;2)\), nhận \(\overrightarrow {{n_{BC}}} = (4;3)\) làm VTPT là:
\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)
b) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right) \Rightarrow BC = \sqrt {{3^2} + {{( - 4)}^2}} = 5\)
\(d(A,BC) = \frac{{\left| {4.( - 1) + 3.3 - 10} \right|}}{{\sqrt {{4^2} + {3^3}} }} = 1\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}.d(A,BC).BC = \frac{1}{2}.1.5 = \frac{5}{2}\)
c) Phương trình đường tròn tâm A tiếp xúc với đường thẳng BC có bán kính \(R = d(A,BC) = 1\) là:
\({(x + 1)^2} + {(y - 3)^2} = 1\)
a.
\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp
Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)
b.
\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)
Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)
c.
\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)
\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)
I C M A D B
Do \(\widehat{AIB}=90^0\Rightarrow\widehat{ACB}=45^0\) hoặc \(\widehat{ACB}=135^0\Rightarrow\widehat{ACD}=45^0\Rightarrow\Delta ACD\) vuông cân tại D nên DA=DC
Hơn nữa IA=IC => \(DI\perp AC\Rightarrow\) đường thẳng AC thỏa mãn điều kiện AC qua điểm M và AC vuông góc ID.
Viết phương trình đường thẳng AC : \(x-2y+9=0\)
Gọi \(A\left(2a-9;a\right)\in AC\). Do \(DA=\sqrt{2}d\left(D,AC\right)=2\sqrt{10}\) nên
\(\sqrt{\left(2a-8\right)^2+\left(a+1\right)^2}=2\sqrt{10}\Leftrightarrow a^2-6a+5=0\)
\(\Leftrightarrow\begin{cases}a=1\Rightarrow A\left(-7;1\right)\\a=5\Rightarrow A\left(1;5\right)\end{cases}\)
Theo giả thiết đầu bài \(\Rightarrow A\left(1;5\right)\)
Viết phương trình đường thẳng DB : \(x+3y+4=0\). Gọi \(B\left(-3b-4;b\right)\)
Tam giác IAB vuông tại I nên : \(\overrightarrow{IA.}\overrightarrow{IB}=0\Leftrightarrow3\left(-3b-2\right)+4\left(b-1\right)=0\Leftrightarrow b=-2\Rightarrow B\left(2;-2\right)\)
Đáp số \(A\left(1;5\right);B\left(2;-2\right)\)
Lời giải:
1.
$\overrightarrow{BC}=(2,4)\Rightarrow \overrightarrow{n_{BC}}=(-4,2)$
PTĐT chứa cạnh $BC$ là:
$-4(x-x_B)+2(y-y_B)=0\Leftrightarrow -2(x-4)+(y-3)=0$
$\Leftrightarrow -2x+y+5=0$
PT đường cao $AH$ nhận $\overrightarrow{BC}=(2,4)$ là vecto pháp tuyến nên có dạng:
$2(x-x_A)+4(y-y_A)=0$
$\Leftrightarrow x-2+2(y-1)=0\Leftrightarrow x+2y-4=0$
2.
Tọa độ điểm $G$:
$x_G=\frac{x_A+x_B+x_C}{3}=4$
$y_G=\frac{y_A+y_B+y_C}{3}=\frac{11}{3}$
Do $(G)$ tiếp xúc với $BC$ nên $R=d(G,BC)$
Có: $d(G,BC)=\frac{|-2x_G+y_G+5|}{\sqrt{(-2)^2+1^2}}=\frac{2\sqrt{5}}{15}$
Vậy PTĐTr cần tìm là: $(x-4)^2+(y-\frac{11}{3})^2=\frac{4}{45}$