Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x_M-x_C;y_M-y_C\right)=\left(x_B-x_A;y_B-y_A\right)\)
\(\Leftrightarrow\left(x_M+1;y_M\right)=\left(3-2;-1-3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_M+1=1\\y_M=-4\end{matrix}\right.\Rightarrow M\left(0;-4\right)\)
Hok nhanh phết, chưa j đã đến phần toạ độ vecto r
1/ \(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(2-x_M;3-y_M\right)\)
\(\Rightarrow2\overrightarrow{MB}=\left(4-2x_M;6-2y_M\right)\)
\(\overrightarrow{3MC}=\left(3x_C-3x_M;3y_C-3y_M\right)=\left(-3-3x_M;6-3y_M\right)\)
\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(4-2x_M-3-3x_M;6-2y_M+6-3y_M\right)=0\)
\(\Leftrightarrow\left(1-5x_M;12-5y_M\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-5x_M=0\\12-5y_M=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=\frac{1}{5}\\y_M=\frac{12}{5}\end{matrix}\right.\Rightarrow M\left(\frac{1}{5};\frac{12}{5}\right)\)
2/ \(\overrightarrow{m}=2\left(1;2\right)+3\left(3;4\right)=\left(2+9;4+12\right)=\left(11;16\right)\)
3/ \(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5-3;4+2\right)=\left(-8;6\right)\)
\(\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(\frac{1}{3}-3;0+2\right)=\left(-\frac{8}{3};2\right)\)
\(\Rightarrow x=\frac{\overrightarrow{AB}}{\overrightarrow{AC}}=\frac{\left(-8;6\right)}{\left(-\frac{8}{3};2\right)}=3\)
Câu 4 tương tự
Câu 5 vt lại đề bài nhé bn, nghe nó vô lý sao á, m,n ở đâu ra vậy, cả A,B,C nx
Gọi M(x;y)
Ta có : \(\overrightarrow{AB}\)= (3;-2) và \(\overrightarrow{MA}\) =( -x; 3-y)
Theo bài: \(\overrightarrow{AB}\) =-2\(\overrightarrow{MA}\) <---->(3;-2) = -2( -x;3-y)
<----> \(\left\{\begin{matrix}3=-2x\\-2=-6+2y\end{matrix}\right.\)
Gỉai ra được x= -3/2 và y= 2 . Suy ra M (-3/2;2)
\(\left\{{}\begin{matrix}\overrightarrow{c}=\left(-m+5n;2m+n\right)\\\overrightarrow{v}=\left(9;4\right)\end{matrix}\right.\)
\(\overrightarrow{c}.\overrightarrow{v}=0\Leftrightarrow9\left(-m+5n\right)+4\left(2m+n\right)=0\)
\(\Leftrightarrow49n-m=0\Rightarrow m=49n\)
Mọi m;n thỏa mãn đẳng thức trên đều được
\(\left\{{}\begin{matrix}\overrightarrow{PM}=\left(-1-a;2-b\right)\\3\overrightarrow{PN}=3\left(1-a;-b\right)=\left(3-3a;-3b\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-1-a=3-3a\\2-b=-3b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)