\(I\left(3;-2\right)\), bán kính 3

a) Viế...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

Gọi I' là ảnh của I qua phép biến hình nói trên

a) Phương trình của đường tròn (I;3) là ((x-3)^{2} + (y+2)^{2} = 9

b) (I) = I' (1;-1), phương trình đường tròn ảnh : (x-1)^{2} + (y+1)^{2} = 9

c) {D_{Ox}}^{} (I) = I'(3;2), phương trình đường tròn ảnh: (x-3)^{2} + (y-2)^{2} = 9

d) {D_{O}}^{}(I) = I'( -3;2), phương trình đường tròn ảnh: (x+3)^{2} + (y-2)^{2} = 9

31 tháng 3 2017

Gọi I' là ảnh của I qua phép biến hình nói trên

a) Phương trình của đường tròn (I;3) là ((x-3)^{2} + (y+2)^{2} = 9

b) (I) = I' (1;-1), phương trình đường tròn ảnh : (x-1)^{2} + (y+1)^{2} = 9

c) {D_{Ox}}^{} (I) = I'(3;2), phương trình đường tròn ảnh: (x-3)^{2} + (y-2)^{2} = 9

d) {D_{O}}^{}(I) = I'( -3;2), phương trình đường tròn ảnh: (x+3)^{2} + (y-2)^{2} = 9

31 tháng 3 2017

I' = {V_{(O,3)}}^{} (I) = (3; -9), I'' = {D_{Ox}}^{} (I') = ( 3;9). Đường tròn phải tìm có phương trình (x-3)^{2} + (y-9)^{2} = 36.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

Phép dời hình và phép đồng dạng trong mặt phẳng

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

31 tháng 3 2017

Gọi A' và d' theo thứ tự là ảnh của A và d qua phép biến hình trên

a) A' = (-1+2; 2+1) = (1;3), d // d', nên d có phương trình : 3x +y + C = 0. Vì A thuộc d, nên A' thuộc d', do đó 3.1 +3 + C = 0. Suy ra C=-6. Do đó phương trình của d' là 3x+y-6=0

b) A (-1;2) và B(0;-1) thuộc d. Ảnh của A và B qua phép đối xứng qua trục Oy tương ứng là A'(1;2) và B'(0;-1). Vậy d' là đường thẳng A'B' có phương trình :

=

hay 3x - y - 1 =0

c) A'=( 1;-2) , d' có phương trình 3x + y -1 =0

d) Qua phép quay tâm O góc , A biến thành A'( -2; -1), B biến thành B'(1;0). Vậy d' là đường thẳng A'B' có phương trình

=

hay x - 3y + 1 = 0

21 tháng 6 2018

a. Phương trình đường tròn : (x – 3)2 + (y + 2)2 = 9.

b. (I1; R1) là ảnh của (I; 3) qua phép tịnh tiến theo vec tơ v.

Giải bài 3 trang 34 sgk Hình học 11 | Để học tốt Toán 11

⇒ Phương trình đường tròn cần tìm: (x – 1)2 + ( y + 1)2 = 9.

c. (I2; R2) là ảnh của (I; 3) qua phép đối xứng trục Ox

⇒ R2 = 3 và I2 = ĐOx(I)

Tìm I2: I= ĐOx(I) ⇒ Giải bài 3 trang 34 sgk Hình học 11 | Để học tốt Toán 11 ⇒ I2(3; 2)

⇒ Phương trình đường tròn cần tìm: (x – 3)2 + (y – 2)2 = 9.

d. (I3; R3) là ảnh của (I; 3) qua phép đối xứng qua gốc O.

⇒ R3 = 3 và I3 = ĐO(I)

Tìm I3: I= ĐO(I) ⇒ Giải bài 3 trang 34 sgk Hình học 11 | Để học tốt Toán 11

 

⇒ Phương trình đường tròn cần tìm: (x + 3)2 +(y – 2)2 = 9.

24 tháng 5 2017

Phép dời hình và phép đồng dạng trong mặt phẳng

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó \(T_{\overrightarrow{v}}\left(A\right)=A'\Leftrightarrow\left\{{}\begin{matrix}x'=3-1=2\\y'=5+2=7\end{matrix}\right.\)

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có: \(A=T_{\overrightarrow{v}}\left(C\right)\Leftrightarrow C=^T\overrightarrow{-v}\left(A\right)=\left(4;3\right)\)

c) Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = \(^T\overrightarrow{v}\) =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy \(^T\overrightarrow{v}\) (d) = d'.

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi \(^T\overrightarrow{v}\)(d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó \(^T\overrightarrow{v}\) (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8.

31 tháng 3 2017

a) Giả sử A'=(x'; y'). Khi đó

(A) = A' ⇔

Do đó: A' = (2;7)

Tương tự B' =(-2;3)

b) Ta có A = (C) ⇔ C= (A) = (4;3)

c)Cách 1. Dùng biểu thức tọa độ của phép tịnh tiến

Gọi M(x;y), M' = =(x'; y'). Khi đó x' = x-1, y' = y + 2 hay x = x' +1, y= y' - 2. Ta có M ∈ d ⇔ x-2y +3 = 0 ⇔ (x'+1) - 2(y'-2)+3=0 ⇔ x' -2y' +8=0 ⇔ M' ∈ d' có phương trình x-2y+8=0. Vậy (d) = d'

Cách 2. Dùng tính chất của phép tịnh tiến

Gọi (d) =d'. Khi đó d' song song hoặc trùng với d nên phương trình của nó có dạng x-2y+C=0. Lấy một điểm thuộc d chẳng hạn B(-1;1), khi đó (B) = (-2;3) thuộc d' nên -2 -2.3 +C =0. Từ đó suy ra C = 8

24 tháng 5 2017

Dễ thấy bán kính của (C') bằng 4. Tâm I' của (C') là ảnh của tâm I(1;2) của (C) qua phép đồng dạng nói trên. Qua phép vị tự tâm O, tỉ số \(k=-2,I\) biến thành \(I_1\left(-2;-4\right)\). Qua phép đối xứng qua trục \(Ox\), \(I_1\) biến thành \(I'\left(-2;4\right)\).

Từ đó suy ra phương trình của (C') là \(\left(x+2\right)^2+\left(y-4\right)^2=16\)