K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 12 2020

B đối xứng với A qua I \(\Leftrightarrow I\) là trung điểm AB

\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_I-x_A=9\\y_B=2y_I-y_A=4\end{matrix}\right.\) \(\Rightarrow B\left(9;4\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AC}=\left(3;y-3\right)\\\overrightarrow{BC}=\left(-4;y-4\right)\end{matrix}\right.\)

\(ABC\) vuông tại C \(\Leftrightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)

\(\Leftrightarrow-12+\left(y-3\right)\left(y-4\right)=0\)

\(\Leftrightarrow...\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

30 tháng 3 2017

Điểm B đối xứng với A qua gốc tọa độ nên tọa độ của B là (2; -1)

Tọa độ của C là (x; 2). Ta có: = (-2 - x; -1)

= (-2 - x; -3)

Tam giác ABC vuông tại C => => . = 0

=> (-2 - x)(2 - x) + (-1)(-3) = 0

=> -4 + x2+ 3 = 0

=> x2 = 1 => x= 1 hoặc x= -1

Ta được hai điểm C1(1; 2); C2(-1; 2)

19 tháng 5 2017

a) Ta có \(A\left(2;-1\right)\), tọa độ điểm B đối xứng với A qua O là \(B\left(-2;1\right)\)

Tích vô hướng của hai vectơ và ứng dụng

NV
9 tháng 7 2021

Gọi E là trung điểm AC, do H và K cùng nhìn AC dưới 1 góc vuông nên H, K thuộc đường tròn đường kính AC (1)

\(\Rightarrow EH=EK\) hay E nằm trên trung trực HK

Gọi F là trung điểm HK \(\Rightarrow F\left(2;-1\right)\)

\(\overrightarrow{HK}=\left(14;-8\right)=2\left(7;-4\right)\Rightarrow\) EF nhận (7;-4) là 1 vtpt

Phương trình EF: \(7\left(x-2\right)-4\left(y+1\right)=0\Leftrightarrow7x-4y-18=0\)

 Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}x-y+10=0\\7x-4y-18=0\end{matrix}\right.\) \(\Rightarrow E\left(\dfrac{58}{3};\dfrac{88}{3}\right)\)

\(\widehat{ACH}=\widehat{HAK}\) (cùng phụ \(\widehat{ABC}\)\(\Rightarrow AH=HK\) 

Mà \(AE=EK\) theo (1) \(\Rightarrow AK\) là trung trực EH

\(\overrightarrow{HE}=\left(\dfrac{73}{3};\dfrac{103}{3}\right)=\dfrac{1}{3}\left(73,103\right)\) \(\Rightarrow AK\) nhận \(\left(103;-73\right)\) là 1 vtpt

Tới đây bạn hãy kiểm tra lại số liệu, số liệu quá bất hợp lý

Tính tiếp như sau:

Viết pt AK (biết đi qua K và có vtpt như trên)

Tìm tọa độ giao điểm P của EH và AK

Khi đó P là trung điểm AK, tìm tọa độ A dễ dàng bằng công thức trung điểm

NV
9 tháng 7 2021

undefined

13 tháng 4 2016

Điểm B đối xứng với A qua gốc tọa độ nên tọa độ của B là (2; -1)

Tọa độ của C là (x; 2). Ta có:  = (-2 – x; -1)

 = (-2 – x; -3)

Tam giác ABC vuông tại C  =>  ⊥   => . = 0

=> (-2 – x)(2 – x) + (-1)(-3) = 0

=> -4 + x2+ 3 = 0

=>  x= 1 => x= 1 hoặc x= -1

Ta được hai điểm   C1(1; 2);   C2(-1; 2)

18 tháng 9 2019

Giải bài 7 trang 46 sgk Hình học 10 | Để học tốt Toán 10

B đối xứng với A qua O ⇒ O là trung điểm của AB

Giải bài 7 trang 46 sgk Hình học 10 | Để học tốt Toán 10

C có tung độ bằng 2 nên C(x; 2)

Giải bài 7 trang 46 sgk Hình học 10 | Để học tốt Toán 10

Tam giác ABC vuông tại C

Giải bài 7 trang 46 sgk Hình học 10 | Để học tốt Toán 10

Vậy có hai điểm C thỏa mãn là C1(1; 2) và C2(–1; 2).

17 tháng 5 2017

a) Hai điểm đối xứng nhau qua trục Ox sẽ có cùng hoành độ và tung độ là hai số đối nhau.
\(M\left(4;3\right)\)\(\Rightarrow A\left(4;-3\right)\).
M A O 4 3 -3

17 tháng 5 2017

b) Hai điểm đối xứng qua trục Oy sẽ có cùng tung độ và hoành độ là hai số đối nhau.
\(M\left(4;3\right)\)\(\Rightarrow A\left(-4;3\right)\).
O x y 4 -4 3 M A

26 tháng 4 2017


A C B M G

a)Theo bài ra => Tam giác ABC vuông cân ở A

M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm

=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)

Giả sử A có tọa độ (a;b)

=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)

b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC

Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC

=>phương trình đường thẳng BC:

1(x-1)-3(y+1)=0

hay x-3y-4=0

=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)

=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC

MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)

=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)

=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)

=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)

TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)

TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)

c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)

Phương trình đường tròn ngoại tiếp tam giác ABC:

(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)