Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ủa sao vô đây nói tục v bạn :)) đã không trả lớp giúp mk rồi thì thôi xin lướt qua :))
1. Điền hạng tử thích hợp vào chố dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.
a) 16x2 + * .24xy + x
b) * - 42xy + 49y2
c) 25x2 + * + 81
d) 64x2 - * +9
2. Viết mỗi bt sau về dạng tổng hoặc hiệu hai bình phương
a) x2 + 10x + 26 + y2 + 2y
b) z2 - 6z + 5 - t2 - 4t
c) x2 - 2xy + 2y2 + 2y + 1
d) ( x + y + 4 )( x + y - 4 )
e) ( x + y - 6 )
Bài 1: Đề như đã sửa thì cách giải như sau:
Trong Tam giác ABC
Có AM/AB = AN/AC
Suy ra: MN // BC .
Trong tam giác ABI
có
MK // BI do K thuộc MN
Do đó : MK/BI =AM/AB (1)
Tương tự trong tam giác AIC
Có NK// IC nên NK/IC = AN/AC (2)
Từ (1) (2) có NK/IC = MK/BI do AN/AC = AM/AB
Lại có IC = IB ( t/c trung tuyến)
nên NK = MK (ĐPCM)
Bài 2:
Bài này thứ tự câu hỏi hình như ngược mình giải lần lượt các câu b) d) c) a)
Từ A kẻ đường cao AH ( H thuộc BC).
b) Do tam giác ABC vuông tại A áp dụng pitago ta có
BC=căn(AB mũ 2 + AC mũ 2)= 20cm
d) Có S(ABC)= AB*AC/2= AH*BC/2
Suy ra: AH= AB*AC/ BC = 12*16/20=9.6 cm
c) Ap dung định lý cosin trong tam giác ABD và ADC ta lần lượt có đẳng thức:
BD^2= AB^2 + AD^2 - 2*AB*AD* cos (45)
DC^2= AC^2+ AD^2 - 2*AC*AD*cos(45) (2)
Trừ vế với vế có:
BD^2-DC^2=AB^2-AC^2- 2*AB*AD* cos (45)+2*AC*AD*cos(45)
(BC-DC)^2-DC^2 = -112+4*Căn (2)* AD.
400-40*DC= -112+................
Suy 128- 10*DC= Căn(2) * AD (3)
Thay (3) v ào (2): rính được DC = 80/7 cm;
BD= BC - DC= 60/7 cm;
a) Ta có S(ABD)=AH*BD/2
S(ADC)=AH*DC/2
Suy ra: S(ABD)/S(ACD)= BD/DC = 60/80=3/4;
Gọi các cạnh của tam giác lần lượt là a, b, c
Theo đề bài ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a+b+c=45(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{â+b+c}{2+3+4}=\dfrac{45}{9}=5\)
=> a= 5.2= 10
=> b= 5.3= 15
=> c= 5.4=20
Vậy các cạnh của tam giác lần lượt là 10cm, 15cm, 20cm
Gọi các cạnh của tam giác lần lượt là a, b, c
Theo đề bài ta có:
a2=b3=c4a2=b3=c4 và a+b+c=45(cm)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
a2=b3=c4=â+b+c2+3+4=459=5a2=b3=c4=â+b+c2+3+4=459=5
=> a= 5.2= 10
=> b= 5.3= 15
=> c= 5.4=20
Vậy các cạnh của tam giác lần lượt là 10cm, 15cm, 20cm
bạn chỉ cần viết len google là Câu hỏi của buithịvânthành - Toán lớp 7 - Học toán với OnlineMath
Gọi độ dài 3 cạnh lần lượt là : 2k;3k;4k
Đặt p=2k+3k+4k2=9k2
Áp dụng công thức tính đường cao ta có:
ha=2.p(p−a)(p−b)(p−c)−−−−−−−−−−−−−−−−−√a
Ta tính được ha theo k
Gọi các cạnh là a,b,c và các đường cao tương ứng là ha , hb và hc
Ta có: \(\frac{h_a}{4}=\frac{h_b}{3}=\frac{h_c}{5}\)
Đặt \(\frac{h_a}{4}=\frac{h_b}{3}=\frac{h_c}{5}=t\Rightarrow h_a=4t,h_b=3t,h_c=5t\)
Ta có: \(a.h_a=b.h_b=c.h_c\) (vì cùng bằng 2 lần diện tích tam giác)
\(\Rightarrow a.4t=b.3t=c.5t\)
\(\Rightarrow4a=3b=5c\Rightarrow\frac{4a}{60}=\frac{3b}{60}=\frac{5c}{60}\Rightarrow\frac{a}{15}=\frac{b}{20}=\frac{c}{12}\)
Vậy các cạnh tương ứng tỉ lệ với 15,20,12