Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: vecto BC=(2;-5)
=>VTPT là (5;2)
Phương trình (d) là:
5(x+1)+2(y-2)=0
=>5x+5+2y-4=0
=>5x+2y+1=0
b: Gọi (C): x^2+y^2-2ax-2by+c=0
Theo đề, ta có:
\(\left\{{}\begin{matrix}\left(-1\right)^2+2^2+2a-4b+c=0\\1^2+1^2-2a-2b+c=0\\9+16-6a+8b+c=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2a-4b+c=-1-4=-5\\-2a-2b+c=-2\\-6a+8b+c=-25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{19}{8}\\b=-\dfrac{13}{4}\\c=-\dfrac{53}{4}\end{matrix}\right.\)
=>(C): x^2+y^2+19/4x+13/2y-53/4=0
=>x^2+2*x*19/8+361/64+y^2+2*y*13/4+169/16=1885/64
=>(x+19/8)^2+(y+13/4)^2=1885/64
1.2
a.
\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận (1;2) là 1 vtpt
Phương trình đường thẳng AB:
\(1\left(x+1\right)+2\left(y-4\right)=0\Leftrightarrow x+2y-7=0\)
b.
Gọi M là trung điểm AB \(\Rightarrow M\left(1;3\right)\)
\(AB=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\) \(\Rightarrow AM=\dfrac{1}{2}AB=\sqrt{5}\)
Đường tròn đường kính AB có tâm M và bán kính \(R=AM=\sqrt{5}\) nên có pt:
\(\left(x-1\right)^2+\left(y-3\right)^2=5\)
1.1
a. \(\overrightarrow{CB}=\left(5;15\right)=5\left(1;3\right)\) ; \(\overrightarrow{CA}=\left(7;11\right)\)
Đường cao qua A vuông góc BC nên nhận (1;3) là 1 vtpt
Phương trình đường cao đi qua A có dạng:
\(1\left(x-4\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-13=0\)
Đường cao qua B vuông góc AC nhận (7;11) là 1 vtpt có dạng
\(7\left(x-2\right)+11\left(y-7\right)=0\Leftrightarrow7x+11y-91=0\)
Trực tâm H là giao điểm 2 đường cao nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}x+3y-13=0\\7x+11y-91=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=13\\y=0\end{matrix}\right.\)
\(\Rightarrow H\left(13;0\right)\)
Giả sử tâm đường tròn là điểm \(I\left( {a;b} \right)\). Ta có: \(IA = IB = IC \Leftrightarrow I{A^2} = I{B^2} = I{C^2}\)
Vì \(I{A^2} = I{B^2},I{B^2} = I{C^2}\) nên: \(\left\{ \begin{array}{l}{\left( {6 - a} \right)^2} + {\left( { - 2 - b} \right)^2} = {\left( {4 - a} \right)^2} + {\left( {2 - b} \right)^2}\\{\left( {4 - a} \right)^2} + {\left( {2 - b} \right)^2} = {\left( {5 - a} \right)^2} + {\left( { - 5 - b} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = - 2\end{array} \right.\)
Vậy \(I\left( {1; - 2} \right)\) và \(R = IA = \sqrt {{{\left( {1 - 6} \right)}^2} + {{\left( { - 2 + 2} \right)}^2}} = 5\)
Vậy phương trình đường tròn đi qua 3 điểm A,B, C là: \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)
Cách 2:
Gọi phương trình đường tròn cần tìm là (C):\({x^2} + {y^2} + 2ax + 2by + c = 0\) \(\left( {{a^2} + {b^2} - c > 0} \right)\)
\(A(6; -2), B(4; 2), C(5; -5)\) thuộc (C) nên ta có:
\(\left\{ {\begin{array}{*{20}{l}}
{36 + 4 + 12a - 4b + c = 0}\\
{16 + 4 + 8a + 4b + c = 0}\\
{25 + 25 + 10a - 10b + c = 0}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{12a - 4b + c = - 40}\\
{8a + 4b + c = - 20}\\
{10a - 10b + c = - 50}
\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}
{a = - 1}\\
{b = 2} \,\rm{(thỏa mãn)}\\
{c = - 20}
\end{array}} \right.\)
Vậy phương trình đường tròn đi qua 3 điểm A, B, C là: \({x^2} + {y^2} - 2x + 4y -20 = 0\) hay \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 25\)
AB=căn (5-1)^2+(2-2)^2=4
AC=căn (1-1)^2+(-3-2)^2=5
BC=căn (1-5)^2+(-3-2)^2=căn 41
AB^2+AC^2=BC^2
=>ΔABC vuông tại A
=>R=BC/2=căn 41/2 và tâm I là trung điểm của BC
Tọa độ I là;
x=(5+1)/2=3 và y=(2-3)/2=-1/2
Phương trình đường tròn là:
(x-3)^2+(y+1/2)^2=41/4
a) Viết phương trình tổng quát của AB và tính diện tích tam giác ABC
Phương trình tổng quát của AB là: 3(x - 1) + 2(y - 2) = 0 ⇔ 3x + 2y - 7 = 0
Kẻ CH ⊥ AB, (H ∈ AB)
Diện tích tam giác ABC là:
b) Viết phương trình đường tròn đường kính AB
Gọi I là trung điểm của AB
Đường tròn đường kính AB là đường tròn tâm I bán kính IA:
Lời giải:
Gọi \(B(a,b)\) và \(C(c,d)\)
Ta có \(\overrightarrow {HA}=(0,4)\perp \overrightarrow{BC}=(c-a,d-b)\Rightarrow 4(d-b)=0\rightarrow b=d\)
Thay \(d=b\):
\(\overrightarrow{HB}=(a-1,b-2)\perp \overrightarrow{AC}=(c-1,b-6)\)
\(\Rightarrow (a-1)(c-1)+(b-2)(b-6)=0\)
Lại có \(IA^2=IB^2=IC^2\leftrightarrow\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-3\right)^2=10\\\left(c-2\right)^2+\left(b-3\right)^2=10\end{matrix}\right.\)
\(\Rightarrow (a-2)^2=(c-2)^2\rightarrow a+c=4\) ( \(a\neq c\) )
Ta thu được
\(\left\{{}\begin{matrix}\left(a-2\right)^2+\left(b-3\right)^2=10\\\left(3-a\right)\left(a-1\right)+\left(b-2\right)\left(b-6\right)=0\end{matrix}\right.\)
\(\left\{\begin{matrix} a^2+b^2-4a-6b+3=0\\ -a^2+4a+b^2-8b+9=0\end{matrix}\right.\Rightarrow 2b^2-14b+12=0\rightarrow b=1\)
hoặc \(b=6\)
Thay vào PT suy ra \(\left[{}\begin{matrix}-a^2+4a+2=0\\-a^2+4a-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2+\sqrt{6}\\a=1;a=3\end{matrix}\right.\)
Vậy.....
a) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right)\)\( \Rightarrow \)VTPT của đường thẳng BC là \(\overrightarrow {{n_{BC}}} = (4;3)\)
PT đường thẳng BC qua \(B(1;2)\), nhận \(\overrightarrow {{n_{BC}}} = (4;3)\) làm VTPT là:
\(4(x - 1) + 3(y - 2) = 0 \Leftrightarrow 4x + 3y - 10 = 0\)
b) Ta có: \(\overrightarrow {BC} = \left( {3; - 4} \right) \Rightarrow BC = \sqrt {{3^2} + {{( - 4)}^2}} = 5\)
\(d(A,BC) = \frac{{\left| {4.( - 1) + 3.3 - 10} \right|}}{{\sqrt {{4^2} + {3^3}} }} = 1\)
\( \Rightarrow {S_{ABC}} = \frac{1}{2}.d(A,BC).BC = \frac{1}{2}.1.5 = \frac{5}{2}\)
c) Phương trình đường tròn tâm A tiếp xúc với đường thẳng BC có bán kính \(R = d(A,BC) = 1\) là:
\({(x + 1)^2} + {(y - 3)^2} = 1\)
Gọi (C): x^2+y^2-2ax-2by+c=0 là PT đường tròn ngoại tiêpΔACB
Theo đề, ta có:
2^2+(-1)^2-4a+2b+c=0 và 1+4+2a-4b+c=0 và 16+1+8a+2b+c=0
=>-4a+2b+c=-5 và 2a-4b+c=-5 và 8a+2b+c=-17
=>a=-1; b=-1; c=-7
=>x^2+y^2+2x+2y-7=0
=>x^2+2x+1+y^2+2y+1=9
=>(x+1)^2+(y+1)^2=9