K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

Toán lớp 9 ư??? oho nhìu quá 

10 tháng 7 2016

ôn thi ĐH á bạn :))

4 tháng 10 2023

loading...  

16 tháng 10 2017

k có điều kiện à :> đắng thật

16 tháng 10 2017

@@ tại đang tìm hiểu về phương pháp hệ số bất định đến đoạn đó ko hiểu tính a b c d kiểu gì !!! Đây là hình của bài hoàn chỉnh ạ !! Với lại cái chỗ khoanh đỏ là cái em đang không biết !!! Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

AH
Akai Haruma
Giáo viên
30 tháng 1 2017

Lời giải:

GTLN:

Áp dụng BĐT Cauchy-Schwarz:

\(B^2=(6\sqrt{x-1}+8\sqrt{3-x})^2\leq (6^2+8^2)(x-1+3-x)=200\)

\(\Rightarrow B_{\max}= 10\sqrt{2}\Leftrightarrow \frac{3}{\sqrt{x-1}}=\frac{4}{\sqrt{3-x}}\Leftrightarrow x=\frac{43}{25}\)

GTNN:

Ta biết một bổ đề sau: Với \(a,b\geq 0\Rightarrow \sqrt{a}+\sqrt{b}\geq \sqrt{a+b}\)

Cách CM rất đơn giản vì nó tương đương với \(\sqrt{ab}\geq 0\) (luôn đúng)

Áp dụng vào bài toán:

\(\Rightarrow B\geq \sqrt{36x-36+192-64x}=\sqrt{156-28x}\geq 6\sqrt{2}\) (do \(x\leq 3\))

Vậy \(B_{\min}=6\sqrt{2}\Leftrightarrow x=3\)

AH
Akai Haruma
Giáo viên
2 tháng 3 2017

Lời giải:

Áp dụng bất đẳng thức AM-GM:

\(a^2+2=(a^2+1)+1\geq 2\sqrt{a^2+1}\)

Do đó mà \(\frac{a^2+2}{\sqrt{a^2+1}}\geq \frac{2\sqrt{a^2+1}}{\sqrt{a^2+1}}=2\) (đpcm)

Dấu bằng xảy ra khi \(a^2+1=1\Leftrightarrow a=0\)