Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(a_k\) lẻ \(\Rightarrow a_k^2\) lẻ
Vế trái là tổng của 2018 số nguyên lẻ \(\Rightarrow\) là một số chẵn
Vế phải là một số lẻ
\(\Rightarrow\) không tồn tại các số \(a_k\) lẻ thỏa mãn
b/ \(4x^2+4y^2+8xy+x^2-2x+1+y^2+2y+1=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Từ gt suy ra \(\frac{2016}{y}+\frac{2017}{x}\le1\).
Áp dụng BĐT Cauchy-Schwarz ta có:
\(x+y\ge\left(x+y\right)\left(\frac{2017}{x}+\frac{2016}{y}\right)\ge\left(\sqrt{2017}+\sqrt{2016}\right)^2\)
Ta có \(a_1\) là số lẻ\(\Rightarrow a_1^2\) là số lẻ
Tương tự:
\(a_2^2\) là số lẻ
...
\(a_{2018}^2\) là số lẻ
\(a^2_{2019}\)là số lẻ
Ta có tổng của 2018 số lẻ sẽ là một số chẵn
\(\Rightarrow a_1^2+a_2^2+a_3^2+...+a_{2018}^2\) là một số chẵn
mà \(a^2_{2019}\) là số lẻ
Vậy không tồn tại 2019 số \(a_1,a_2,a_3,...,a_{2019}\)nguyên lẻ thỏa mãn đẳng thức \(a_1^2+a_2^2+a_3^2+...+a_{2018}^2=a^2_{2019}\)
+, Nếu x = 0 hoặc x = 1 ; y = 0 hoặc y = 1 thay vào 2016x2017 + 2017y2018 = 2019 thì 2016.02017 + 2017.02018 = 4033 ( Loại )
+, Nếu x,y \(\ge\)2 thay vào 2016 . 22017 + 2017 . y 2018 = 2019 ( Vô lí , loại )
Do đó không tồn tại 2 số nguyên x;y thỏa mãn điều kiện bài toán
Vậy không tồn tại ......
Hok tốt
mình xin nhắc nhẹ bạn là nguyên chứ ko phải nguyên dương nên x^2017 có thể âm nhé