Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC vuông tại A=> sin B= cosC =\(\frac{3}{4}\)mà lại có:
\(\sin^2B+\cos^2B=1\)
=> \(\cos^2B=1-\sin^2B\)
=> cos B= 1-3/4=1/4
Ba điểm không thẳng hàng sẽ tạo thành một tam giác. Để đường tròn qua hết 3 điểm đó thì đường tròn đó sẽ là đường tròn ngoại tiếp của tam giác.
Vì 3 điểm chỉ tạo nên 1 tam giác cho nên tam giác cúng chỉ có 1 đường tròn ngoại tiếp duy nhất.
Kết luận: chỉ có 1.
1/ Điều kiện xác định \(x\ge0\)
\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)
\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)
\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)
Vậy pt vô nghiệm
2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)
\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)
\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)
Vậy pt vô nghiệm.
1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)
Đặt \(a=\sqrt{x}-1\) ta đc:
\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)
\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)
\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)
\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)
=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))
\(\dfrac{a}{b+c}+1+\dfrac{b}{c+a}+1=\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}\right)\)
Áp dụng BĐT AM-GM:\(\dfrac{1}{b+c}+\dfrac{1}{a+c}\ge\dfrac{4}{a+b+2c}\)
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}\ge\dfrac{4\left(a+b+c\right)}{a+b+2c}-2\)(*)
Lại có: theo AM-GM:\(\sqrt{\dfrac{a+b}{2c}.1}\le\dfrac{1}{2}.\dfrac{a+b+2c}{2c}=\dfrac{a+b+2c}{4c}\)
\(\Rightarrow\sqrt{\dfrac{2c}{a+b}}\ge\dfrac{4c}{a+b+2c}\)(**)
từ (*) và (**),ta có:
\(VT\ge\dfrac{4\left(a+b+c\right)+4c}{a+b+2c}-2=\dfrac{4\left(a+b+2c\right)}{a+b+2c}-2=2\)(ĐpcM)
Dấu = xảy ra khi a=b=c>0