K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
14 tháng 12 2020

\(A=2^{100}-\left(2^{99}+2^{98}+...+2+1\right)\)

Đặt \(B=2^{99}+2^{98}+...+2+1\)

\(\Rightarrow2B=2^{100}+2^{99}+...+2^2+2\)

\(\Rightarrow2B-B=2^{100}-1\Leftrightarrow B=2^{100}-1\)

\(\Rightarrow A=2^{100}-\left(2^{100}-1\right)=1\)

11 tháng 3 2015

2A=2.(2100-299-....-22-2-1)

2A= 2101-2100-...-23-22-2

                                           Lấy 2A ở trên trừ đi A ở đề bài ta có 

                                                   2A-A= (2101-2100-...-23-22-2)-(2100-299-....-22-2-1)

                                                       A= 2101-1

Còn kết quả cụ thể thì mình chịu

1 tháng 1 2016

kết quả cụ thể là 0

 

25 tháng 12 2016

Quy luật chưa rõ rằng

5 tháng 8 2017

Ta thấy:
\(A=1\cdot3+2\cdot4+...+97\cdot99+98\cdot100\)
\(A=1\cdot\left(1+2\right)+2\cdot\left(1+3\right)+...+97\cdot\left(1+98\right)+98\cdot\left(1+99\right)\)
\(A=\left(1+1\cdot2\right)+\left(2+2\cdot3\right)+...+\left(97+97\cdot98\right)+\left(98+98\cdot99\right)\)
\(A=\left(1+2+...+97+98\right)+\left(1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\right)\)
Đặt \(B=1+2+...+97+98\) ; \(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\). Khi đó: \(A=B+C\)
* Do số các số hạng của tổng B là:    ( 98 - 1 ) : 1 + 1 = 98 ( số hạng ) nên:
\(B=1+2+...+97+98=\frac{\left(98+1\right)\cdot98}{2}=99\cdot49=4851\)
* Ta thấy:
\(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+...+97\cdot98\cdot3+98\cdot99\cdot3\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+97\cdot98\cdot\left(99-96\right)+98\cdot99\cdot\left(100-97\right)\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+97\cdot98\cdot99-96\cdot97\cdot98+98\cdot99\cdot100-97\cdot98\cdot99\)
\(\Rightarrow3\cdot C=98\cdot99\cdot100\)
\(\Rightarrow C=\frac{98\cdot99\cdot100}{3}\)
\(\Rightarrow C=98\cdot33\cdot100\)
\(\Rightarrow C=323400\)
Vậy: \(A=B+C=4851+323400=328251\)

10 tháng 10 2018

A = (1002 - 992 )+( 982 - 972 )+ ...+( 22 - 1)

A = (100+99).(100-99)+(98+97).(98-97) + ...+(2+1).(2-1)

A = 199 + 195  + ...+ 3

A = (199+3).[(199-3):4 + 1] : 2

A = 5050

25 tháng 2 2016

Đặt A = 2100 - 299 - 298 - .... - 22 - 2 - 1

=> A = 2100 - ( 299 + 298 + 297 + .... + 22 + 2 + 1 )

Đặt B = 1 + 2 + 22 + 23 + .... + 298 + 299

=> 2B = 2 + 22 + 23 + 24 + .... + 299 + 2100

=> 2B - B = ( 2 + 22 + 23 + 24 + .... + 299 + 2100 ) - ( 1 + 2 + 22 + 23 + .... + 298 + 299 )

=> B = 2100 - 1

Ta có A = 2100 - ( 2100 - 1 )

=> A = 2100 - 2100 + 1

=> A = 1

Vậy tổng dãy số trên là 1

3 tháng 5 2016

Triển khai phép tính trên, ta có:
\(\Leftrightarrow\left(2^{99}\cdot2-2^{99}\right)+\left(2^{97}\cdot2-2^{97}\right)+...+\left(2\cdot2-2\right)\)
\(\Leftrightarrow2^{99}+2^{97}+2^{95}+...+2^3+2\)
\(\Leftrightarrow\left(2^{97}\cdot2^2+2^{97}\right)+\left(2^{93}\cdot2^2+2^{93}\right)+...+\left(2^3\cdot2^2+2^3\right)+2\)
\(\Leftrightarrow5\left(2^{97}+2^{93}+2^{89}+...+2^7+2^3\right)+2\)

30 tháng 12 2015

A= 2100-99-98-...2-1

A= 20=1-1

=> A=0

Nhiều thế bạn

Đăng từ từ thôi chứ

Đăng nhiều thế này làm sao mà xong kịp được

23 tháng 1 2017

có nhiều lắm đâu