Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{6.10}+\dfrac{1}{10.14}+...+\dfrac{1}{402.406}\\ 4B=\dfrac{4}{6.10}+\dfrac{4}{10.14}+...+\dfrac{4}{402.406}\\ 4B=\dfrac{1}{6}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{14}+...+\dfrac{1}{402}-\dfrac{1}{406}\\ 4B=\dfrac{1}{6}-\dfrac{1}{406}=\dfrac{100}{609}\\B=\dfrac{\dfrac{100}{609}}{4}=\dfrac{25}{609} \)
\(B=\dfrac{1}{6}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{14}+...+\dfrac{ 1}{402}-\dfrac{1}{406}\)
\(=\dfrac{1}{6}-\dfrac{1}{406}=\dfrac{100}{609}.\)
Ta có: \(P=\dfrac{1}{49}+\dfrac{2}{48}+\dfrac{3}{47}+...+\dfrac{48}{2}+\dfrac{49}{1}\)
\(P=\left(1+\dfrac{1}{49}\right)+\left(1+\dfrac{2}{48}\right)+\left(1+\dfrac{3}{47}\right)+...+\left(1+\dfrac{48}{2}\right)+1\)
\(P=\dfrac{50}{49}+\dfrac{50}{48}+\dfrac{50}{47}+...+\dfrac{50}{2}+\dfrac{50}{50}\)
\(P=50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(\Rightarrow\dfrac{S}{P}=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}}{50\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)}=\dfrac{1}{50}\)
\(\dfrac{1}{9}+\dfrac{1}{10}< \dfrac{1}{8}+\dfrac{1}{8}=\dfrac{1}{4}\) và \(\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{40}+\dfrac{1}{40}=\dfrac{1}{20}\)
Suy ra:
\(S=\dfrac{1}{5}+\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{41}+\dfrac{1}{42}< \dfrac{1}{5}+\dfrac{1}{4}+\dfrac{1}{20}=\dfrac{1}{2}\)
Trả lời
a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...\dfrac{2}{99.101}\)
=\(2.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\right)\)
=\(2.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
= \(2.\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)
=\(2.\dfrac{100}{101}\)
=\(\dfrac{200}{101}\)
\(S=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{96.101}\\ S=\dfrac{25}{1.6}+\dfrac{25}{6.11}+\dfrac{25}{11.16}+...+\dfrac{25}{96.101}\\ S=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{96.101}\right)\\ S=5.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\\ S=5.\left(1-\dfrac{1}{101}\right)\\ S=5.\dfrac{100}{101}\\ S=\dfrac{500}{101}\)
\(S=\dfrac{2}{2\cdot6}+\dfrac{2}{6\cdot10}+...+\dfrac{2}{96\cdot100}\\ =\dfrac{1}{2}\left(\dfrac{4}{2\cdot6}+\dfrac{4}{6\cdot10}+...+\dfrac{4}{96\cdot100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{10}+...+\dfrac{1}{96}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)=\dfrac{1}{2}\cdot\dfrac{49}{100}\\ =\dfrac{49}{100}\)