Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=(3^0+1/2)+(3^1/2+1/2)+(3^2/2+1/2)+....+(3^n-1/2+1/2)
=n*1/2+1/2*(3^0+3^1+3^2+...+3^n-1)
=n^2/2+(3^n-1/4)=3^n+2-1/4
~~~~~~~~~~~~~~~~~~~~~
\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)
\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)
\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)
\(S_1=1+1+1+...+n=n\)
\(S_2=3+9+...+3^n\)
\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)
\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)
Đặt P=31-1+32-1+33-1+34-1+...+3n-1
=>P=30+31+32+33+...+3n-1
=>3.P=31+32+33+34+...+3n
=>3.P-P=31+32+33+34+...+3n-30-31-32-33-...-3n-1
=>2.P=3n-30
=>2.P=3n-1
=>\(P=\frac{3^n-1}{2}\)
Lại có: S=1+2+5+14+...+\(\frac{3^{n-1}+1}{2}\)
=>\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+\frac{3^{4-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)
=>\(S=\frac{3^{1-1}+1+3^{2-1}+1+3^{3-1}+1+3^{4-1}+1+...+3^{n-1}+1}{2}\)
=>\(S=\frac{\left(3^{1-1}+3^{2-1}+3^{3-1}+3^{4-1}+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)
=>\(S=\frac{P+1.n}{2}\)
=>\(S=\frac{\frac{3^n-1}{2}+n}{2}\)
=>\(S=\frac{\frac{3^n-1}{2}+\frac{2n}{2}}{2}\)
=>\(S=\frac{\frac{3^n-1+2n}{2}}{2}\)
=>\(S=\frac{3^n-1+2n}{4}\)
S=\(\frac{3^0+1}{2}+\frac{3^1+1}{2}+...+\frac{3^{n-1}+1}{2}\)
S=\(\frac{\left(3^0+1\right)+\left(3^1+1\right)+...+\left(3^{n-1}+1\right)}{2}\)
2S=(30+31+...+3n-1)+(1+1+...+1) (n số hạng 1)
2S=\(\frac{3^n-1}{2}\)+n
2S=\(\frac{3^n-1}{4}+\frac{n}{2}\)
(chỗ 30+31+...+3n-1 mình tính theo công thức nên tắt)
áp dụng quy tắc
số số hạng= (số cuối-số đầu) chí cho khoảng cách rồi cộng với 1
Tổng=(số đầu +số cuối ) nhân với số số số hạng rồi chia cho 2