Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
\(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{1892}+\frac{2}{1980}\)
\(=\frac{2}{5\cdot6}+\frac{2}{6\cdot7}+\frac{2}{7\cdot8}+...+\frac{2}{43\cdot44}+\frac{2}{44\cdot45}\)
\(=2\left(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{43\cdot44}+\frac{1}{44\cdot45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{45}\right)=2\left(\frac{9}{45}-\frac{1}{45}\right)=2\cdot\frac{8}{45}=\frac{16}{45}\)
Chúc bạn học tốt!
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(M=\frac{2}{30}+\frac{2}{42}+...+\frac{2}{1980}\)
\(M=2\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{44.45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(M=2\times\frac{8}{45}\)
\(M=\frac{16}{45}\)
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(M=\frac{1\times2}{15\times2}+\frac{1\times2}{21\times2}+\frac{1\times2}{28\times2}+\frac{1\times2}{946\times2}+\frac{1\times2}{990\times2}\)
\(M=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{1892}+\frac{2}{1980}\)
\(M=2\times\left(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{1892}+\frac{1}{1980}\right)\)
\(M=2\times\left(\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+...+\frac{1}{43\times44}+\frac{1}{44\times45}\right)\)
\(M=2\times\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2\times\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(M=2\times\left(\frac{9}{45}-\frac{1}{45}\right)\)
\(M=2\times\frac{8}{45}\)
\(M=\frac{16}{45}\)
Chúc bạn học tốt
\(M=\frac{2}{30}+\frac{2}{42}+...+\frac{2}{1980}\)
\(M=2\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{44.45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(M=2\times\frac{8}{45}\)
\(M=\frac{16}{45}\)
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+....+\frac{1}{946}+\frac{1}{990}\)
\(M=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+.....+\frac{2}{1892}+\frac{2}{1980}\)
\(M=2.\left(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{1892}+\frac{1}{1980}\right)\)
\(M=2.\left(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+....+\frac{1}{43.44}+\frac{1}{44.45}\right)\)
\(M=2.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\right)\)
\(M=2.\left(\frac{1}{5}-\frac{1}{45}\right)=2.\frac{8}{45}=\frac{16}{45}\)
Vậy M=16/45
Đặt tổng trên = A
Có : A = 1/1.2.3 + 1/2.3.4 + ...... + 1/9.10.11
2A = 2/1.2.3 + 2/2.3.4 + ...... + 2/9.10.11
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ....... + 1/9.10 - 1/10.11
= 1/1.2 - 1/10.11
= 1/2 - 1/110 = 27/55
=> A = 27/55 : 2 = 27/110
Tk mk nha
\(\frac{-5}{x}=\frac{-y}{8}=\frac{18}{72}\)
\(\Leftrightarrow\frac{-5}{x}=\frac{-y}{8}=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}-\frac{5}{x}=\frac{1}{4}\\-\frac{y}{8}=\frac{1}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5.4:1\\-y=8.1:4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-20\\-y=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-20\\y=-2\end{cases}}}\)
vậy x=-20 và y=-2
#)Trả lời :
\(A=\frac{\left(140+70+42+28+20+15\right)}{420}\)
\(A=\frac{315}{420}=\frac{\left(315:105\right)}{\left(420:105\right)}=\frac{3}{4}\)
Vậy : \(A=\frac{3}{4}\)
#~Will~be~Pens~#
`Answer:`
Bài 1:
a. \(\frac{1}{2}-\left(\frac{2}{3}x-\frac{1}{3}\right)=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{2}-\frac{2}{3}x+\frac{1}{3}=\frac{2}{3}\)
\(\Leftrightarrow\frac{5}{6}-\frac{2}{3}x=\frac{2}{3}\)
\(\Leftrightarrow-\frac{2}{3}=\frac{2}{3}-\frac{5}{6}\)
\(\Leftrightarrow-\frac{2}{3}x=-\frac{1}{6}\)
\(\Leftrightarrow x=-\frac{1}{6}:-\frac{2}{3}\)
\(\Leftrightarrow x=\frac{1}{4}\)
b. \(\frac{3}{x+5}=15\%\left(ĐKXĐ:x\ne-5\right)\)
\(\Leftrightarrow\frac{3}{x+5}=\frac{3}{20}\)
\(\Leftrightarrow\frac{60}{20\left(x+5\right)}=\frac{3\left(x+5\right)}{20\left(x+5\right)}\)
\(\Leftrightarrow60x=3x+15\)
\(\Leftrightarrow-3x=-45\)
\(\Leftrightarrow x=15\)
Bài 2:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}\)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(\Rightarrow A=\frac{1}{3}-\frac{1}{51}=\frac{17}{51}-\frac{1}{51}=\frac{16}{51}\)
\(B=5\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{100}-\frac{1}{103}\right)\)
\(\Rightarrow B=5\cdot\left(1-\frac{1}{103}\right)=5\cdot\frac{102}{103}=\frac{510}{103}\)
\(C=5\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}\right)\)
\(\Rightarrow C=5\cdot\left(1-\frac{1}{101}\right)=5\cdot\frac{100}{101}=\frac{500}{101}\)
\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)
\(B=\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(B=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{5}{3}\left(1-\frac{1}{103}\right)\)
\(B=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)
\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)
\(C=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(C=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(C=\frac{5}{2}\left(1-\frac{1}{101}\right)\)
\(C=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)
\(M=\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{2}\left(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\right)\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+...+\frac{1}{1892}+\frac{1}{1980}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{43.44}+\frac{1}{44.45}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\)
\(\Rightarrow\frac{1}{2}M=\frac{1}{5}-\frac{1}{45}=\frac{9}{45}-\frac{1}{45}=\frac{8}{45}\)
\(\Rightarrow M=\frac{8}{45}:\frac{1}{2}=\frac{8}{45}.2=\frac{16}{45}\)
nhớ ấn đúng cho mình nha
\(M=\frac{2}{30}+\frac{2}{42}+...+\frac{2}{1980}\)
\(=2\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{44.45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{44}-\frac{1}{45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(=2\times\frac{8}{45}\)
\(=\frac{16}{45}\)