\(I=\int\limits_{\frac{-1}{2}}^0\frac{dx}{\left(x+1\right)\sqrt{3+2x-x^2}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

\(I=\int\limits^0_{\frac{-1}{2}}\frac{dx}{\left(x+1\right)\sqrt{3+2x-x^2}}=\int\limits^0_{\frac{-1}{2}}\frac{dx}{\left(x+1\right)\left(\sqrt{\left(x+1\right)\left(3-x\right)}\right)}\)

                                   \(=\int\limits^0_{\frac{-1}{2}}\frac{dx}{\left(x+1\right)^2\sqrt{\frac{3-x}{x+1}}}\)

Đặt \(t=\sqrt{\frac{3-x}{x+1}}\Rightarrow\frac{dx}{\left(x+1\right)^2}=-\frac{1}{2}\)

Đổi cận : \(x=-\frac{1}{2}\Rightarrow t=\sqrt{7};x=0\Rightarrow t=\sqrt{3}\)

\(I=-\frac{1}{2}\int\limits^{\sqrt{3}}_{\sqrt{7}}dt=\frac{1}{2}\left(\sqrt{7}-\sqrt{3}\right)\)

23 tháng 1 2016

a) Đặt \(x=\sin t;t\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\) \(\Rightarrow dx=\cos tdt\)

Suy ra : \(\frac{dx}{\sqrt{\left(1-x^2\right)^3}}=\frac{\cos tdt}{\sqrt{\left(1-\sin^2t\right)^3}}=\frac{\cos tdt}{\cos^3t}=\frac{dt}{\cos^2t}=d\left(\tan t\right)\)

Khi đó \(\int\frac{dx}{\sqrt{\left(1-x^2\right)^3}}=\int d\left(\tan t\right)=\tan t+C=\frac{\sin t}{\sqrt{1-\sin^2t}}=\frac{x}{\sqrt{1-x^2}}+C\)

23 tháng 1 2016

b) Vì \(x^2+2x+3=\left(x+1\right)^2+\left(\sqrt{2}\right)^2\)

nên ta đặt : \(x+1=\sqrt{2}\tan t;t\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow dx=\sqrt{2}.\frac{dt}{\cos^2t};\tan t=\frac{x+1}{\sqrt{2}}\)

Suy ra \(\frac{dx}{\sqrt{x^2+2x+3}}=\frac{dx}{\sqrt{\left(x^2+1\right)^2+\left(\sqrt{2}\right)^2}}=\frac{dx}{\sqrt{2\left(\tan^2t+1\right).\cos^2t}}\)

                        \(=\frac{dt}{\sqrt{2}\cos t}=\frac{1}{\sqrt{2}}.\frac{\cos tdt}{1-\sin^2t}=-\frac{1}{2\sqrt{2}}.\left(\frac{\cos tdt}{\sin t-1}-\frac{\cos tdt}{\sin t+1}\right)\)

Khi đó \(\int\frac{dx}{\sqrt{x^2+2x+3}}=-\frac{1}{2\sqrt{2}}\int\left(\frac{\cos tdt}{\sin t-1}-\frac{\cos tdt}{\sin t+1}\right)=-\frac{1}{2\sqrt{2}}\ln\left|\frac{\sin t-1}{\sin t+1}\right|+C\left(1\right)\)

Từ \(\tan t=\frac{x+1}{\sqrt{2}}\Leftrightarrow\tan^2t=\frac{\sin^2t}{1-\sin^2t}=\frac{\left(x+1\right)^2}{2}\Rightarrow\sin^2t=1-\frac{2}{x^2+2x+3}\)

Ta tìm được \(\sin t\) thay vào (1), ta tính được I

29 tháng 11 2019
https://i.imgur.com/Pe6vPSJ.jpg
AH
Akai Haruma
Giáo viên
6 tháng 3 2017

Câu 1)

Ta có \(I=\int ^{1}_{0}\frac{dx}{\sqrt{3+2x-x^2}}=\int ^{1}_{0}\frac{dx}{4-(x-1)^2}\).

Đặt \(x-1=2\cos t\Rightarrow \sqrt{4-(x-1)^2}=\sqrt{4-4\cos^2t}=2|\sin t|\)

Khi đó:

\(I=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{d(2\cos t+1)}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{2\sin tdt}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}dt=\left.\begin{matrix} \frac{2\pi}{3}\\ \frac{\pi}{2}\end{matrix}\right|t=\frac{\pi}{6}\)

Câu 3)

\(K=\int ^{3}_{2}\ln (x^3-3x+2)dx=\int ^{3}_{2}\ln [(x+2)(x-1)^2]dx\)

\(=\int ^{3}_{2}\ln (x+2)d(x+2)+2\int ^{3}_{2}\ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\): Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln t dt=t\ln t-t\)

\(\Rightarrow K=\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x+2)[\ln (x+2)-1]+2\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x-1)[\ln (x-1)-1]\)

\(=5\ln 5-4\ln 4-1+4\ln 2-2=5\ln 5-4\ln 2-3\)

AH
Akai Haruma
Giáo viên
6 tháng 3 2017

Bài 2)

\(J=\int ^{1}_{0}x\ln (2x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (2x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2dx}{2x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)

Khi đó:

\(J=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2\ln (2x+1)}{2}-\int ^{1}_{0}\frac{x^2}{2x+1}dx\)\(=\frac{\ln 3}{2}-\frac{1}{4}\int ^{1}_{0}(2x-1+\frac{1}{2x+1})dx\)

\(=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2-x}{4}-\frac{1}{8}\int ^{1}_{0}\frac{d(2x+1)}{2x+1}=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\ln (2x+1)}{8}\)

\(=\frac{\ln 3}{2}-\frac{\ln 3}{8}=\frac{3\ln 3}{8}\)

27 tháng 12 2016

1) Đặt \(2+lnx=t\Leftrightarrow x=e^{t-2}\Rightarrow dx=e^{t-2}dt\)

\(I_1=\int\left(\frac{t-2}{t}\right)^2\cdot e^{t-2}\cdot dt=\int\left(1-\frac{4}{t}+\frac{4}{t^2}\right)e^{t-2}dt\\ =\int e^{t-2}dt-4\int\frac{e^{t-2}}{t}dt+4\int\frac{e^{t-2}}{t^2}dt\)

Có:

\(4\int\frac{e^{t-2}}{t^2}dt=-4\int e^{t-2}\cdot d\left(\frac{1}{t}\right)=-\frac{4\cdot e^{t-2}}{t}+4\int\frac{e^{t-2}}{t}dt\\ \Leftrightarrow4\int\frac{e^{t-2}}{t^2}dt-4\int\frac{e^{t-2}}{t^{ }}dt=-\frac{4\cdot e^{t-2}}{t}\)

Vậy \(I_1=\int e^{t-2}dt-\frac{4\cdot e^{t-2}}{t}=e^{t-2}-\frac{4e^{t-2}}{t}+C\)

27 tháng 12 2016

3) Đặt \(t=\sqrt{1+\sqrt[3]{x^2}}\Rightarrow t^2-1=\sqrt[3]{x^2}\Leftrightarrow x^2=\left(t^2-1\right)^3\)

\(d\left(x^2\right)=d\left[\left(t^2-1\right)^3\right]\Leftrightarrow2x\cdot dx=6t\left(t^2-1\right)^2\cdot dt\)

\(I_3=\int\frac{3t\left(t^2-1\right)^2}{t}dt=3\int\left(t^4-2t^2+1\right)dt=...\)

20 tháng 1 2017

lm jup mk di m.n

18 tháng 3 2016

a) Đặt \(\sqrt{2x-5}=t\) khi đó \(x=\frac{t^2+5}{2}\) , \(dx=tdt\)

Do vậy \(I_1=\int\frac{\frac{1}{4}\left(t^2+5\right)^2+3}{t^3}dt=\frac{1}{4}\int\frac{\left(t^4+10t^2+37\right)t}{t^3}dt\)

                \(=\frac{1}{4}\int\left(t^2+10+\frac{37}{t^2}\right)dt=\frac{1}{4}\left(\frac{t^3}{3}+10t-\frac{37}{t}\right)+C\)

Trở về biến x, thu được :

\(I_1=\frac{1}{12}\sqrt{\left(2x-5\right)^3}+\frac{5}{2}\sqrt{2x-5}-\frac{37}{4\sqrt{2x-5}}+C\)

 

b) \(I_2=\frac{1}{3}\int\frac{d\left(\ln\left(3x-1\right)\right)}{\ln\left(3x-1\right)}=\frac{1}{3}\ln\left|\ln\left(3x-1\right)\right|+C\)

 

c) \(I_3=\int\frac{1+\frac{1}{x^2}}{\sqrt{x^2-7+\frac{1}{x^2}}}dx=\int\frac{d\left(x-\frac{1}{x}\right)}{\sqrt{\left(x-\frac{1}{2}\right)^2-5}}\)

Đặt \(x-\frac{1}{x}=t\)

\(\Rightarrow\) \(I_3=\int\frac{dt}{\sqrt{t^2-5}}=\ln\left|t+\sqrt{t^2-5}\right|+C\)

                           \(=\ln\left|x-\frac{1}{x}+\sqrt{x^2-7+\frac{1}{x^2}}\right|+C\)

 

18 tháng 3 2016

Chịu thôi khó quá.

NV
29 tháng 3 2019

1/ \(\int\limits^e_1\left(x+\frac{1}{x}+\frac{1}{x^2}\right)dx=\left(\frac{x^2}{2}+lnx-\frac{1}{x}\right)|^e_1=\frac{e^2}{2}-\frac{1}{e}+\frac{3}{2}\)

2/ \(\int\limits^2_1\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)dx=\int\limits^2_1\left(x\sqrt{x}+1\right)dx=\int\limits^2_1\left(x^{\frac{3}{2}}+1\right)dx\)

\(=\left(\frac{2}{5}.x^{\frac{5}{2}}+x\right)|^2_1=\frac{8\sqrt{2}-7}{5}\)

3/

\(\int\limits^2_1\frac{2x^3-4x+5}{x}dx=\int\limits^2_1\left(2x^2-4+\frac{5}{x}\right)dx=\left(\frac{2}{3}x^3-4x+5lnx\right)|^2_1=\frac{2}{3}+5ln2\)

4/ \(\int\limits^2_1x^2\left(3x-1\right)\frac{2}{x}dx=\int\limits^2_1\left(6x^2-2x\right)dx=\left(2x^3-x^2\right)|^2_1=11\)

6 tháng 4 2016

\(I=\int\limits^5_1\left(\frac{x}{\sqrt{x-1}+1}+\frac{\ln x}{\left(x+1\right)^2}\right)dx=\int\limits^5_1\frac{x}{\sqrt{x-1}+1}dx+\int\limits^5_1\frac{\ln x}{\left(x+1\right)^2}dx\)

- Tính \(\int\limits^5_1\frac{x}{\sqrt{x-1}+1}dx\)

Đặt \(t=\sqrt{x-1}\Rightarrow t^2=x-1\Leftrightarrow x=t^2+1\Rightarrow dx=2tdt\)

Đổi cận : Cho x=1 => t=0; x=5=>t=2

\(I_1=\int\limits^2_0\frac{t^2+1}{t+1}.2td=\int\limits^2_0\frac{2t^3+2t}{t+1}dt=\int\limits^2_0\left(2t^2-2t+4-\frac{4}{t+1}\right)dt\)

    \(=\left(\frac{2}{3}t^3-t^2+4t-4\ln\left|x+1\right|\right)|^2_0=\frac{28}{3}-4\ln3\)

\(I_2=\int\limits^5_1\frac{\ln x}{\left(x+1\right)^2}dx\)

Đặt \(\begin{cases}u=\ln x\\dv=\frac{1}{\left(x+1\right)^2}dx\end{cases}\) \(\Rightarrow\begin{cases}du=\frac{1}{x}dx\\v=-\frac{1}{x+1}\end{cases}\)

Ta có \(I_2=-\frac{1}{x+1}\ln x|^5_1+\int\limits^5_1\frac{1}{x\left(x+1\right)}dx=-\frac{1}{6}\ln5+\int\limits^5_1\left(\frac{1}{x}-\frac{1}{x+1}\right)dx\)

\(=-\frac{1}{6}\ln5+\left(\ln\left|x\right|x+1\right)|^5_1=-\frac{1}{6}\ln5+\ln5-\ln6+\ln2=\frac{5}{6}\ln5-\ln3\)

Khi đó \(I=I_1+I_2=\frac{28}{3}+\frac{5}{6}\ln5=5\ln3\)

NV
24 tháng 11 2019

Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)

a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)

Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)

\(\Rightarrow9x^2dx=-6udu\)

\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)

b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)

\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)

c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)

\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)

NV
24 tháng 11 2019

d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)

\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)

\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)

e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)

\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)

f/ \(I=\int cosx.sin^3xdx\)

Đặt \(u=sinx\Rightarrow du=cosxdx\)

\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)