\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+...+\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

Từ dãy trên ta có:

(\(\frac{3}{2}\)+\(\frac{1}{2}\))+(\(\frac{8}{3}\)+\(\frac{2}{3}\))+......+(\(\frac{2600}{51}\)+\(\frac{1}{51}\))                  < vì không có cách nhập hỗn số nên mình đổi ra phân số >

= 2 + 3 + 4 + 5 + 6 + ..........................+ 51

Từ 2 -> 51 có :( 51 - 2 ) : 1 + 1 = 50 số 

Chia ra : 50 : 2 = 25 cặp 

ta có( 51 + 2 ) x 25 =1325

Vậy tổng trên có kết quả bằng 1325       (tớ chỉ nghĩ thế thôi chứ sai đừng trách nhá.Đùa thôi,đúng đấy )

3 tháng 3 2016

Ta có : 

\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\)

\(\left(1\frac{1}{2}+\frac{1}{2}\right)+\left(2\frac{2}{3}+\frac{1}{3}\right)+\left(3\frac{3}{4}+\frac{1}{4}\right)+...+\left(49\frac{49}{50}+\frac{1}{50}\right)+\left(50\frac{50}{51}+\frac{1}{51}\right)\)

\(2+3+4+5+...+49+50+51\)

\(\left(\frac{51-2}{1}+1\right).\frac{51+2}{2}\)

\(50.26,5\)

= 1325

28 tháng 2 2017

\(=\left(1\frac{1}{2}+\frac{1}{2}\right)+\left(2\frac{2}{3}+\frac{1}{3}\right)+...+\left(50\frac{50}{51}+\frac{1}{51}\right)\)

\(=2+3+...+51\)

\(=\frac{\left(2+51\right)50}{2}\)

\(=1325\)

27 tháng 2 2017

\(1\dfrac{1}{2}+2\dfrac{2}{3}+3\dfrac{3}{4}+...+50\dfrac{50}{51}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{51}\)

\(=\left(1\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(2\dfrac{2}{3}+\dfrac{1}{3}\right)+\left(3\dfrac{3}{4}+\dfrac{1}{4}\right)+...+\left(50\dfrac{50}{51}+\dfrac{1}{51}\right)\)

\(=2+3+4+...+51\)

\(=\dfrac{50\left(51+2\right)}{2}\)

=1325

20 tháng 1 2019

Đặt \(A=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

\(\Rightarrow3A=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)

\(\Rightarrow A+3A=\left(-\frac{1}{3}+\frac{1}{3^2}-...-\frac{1}{3^{51}}\right)+\left(-1+\frac{1}{3}-...-\frac{1}{3^{50}}\right)\)

\(\Leftrightarrow4A=-1-\frac{1}{3^{51}}\)

\(\Leftrightarrow4A=-\frac{3^{51}+1}{3^{51}}\Rightarrow A=-\frac{3^{51}+1}{3^{51}.4}\)

20 tháng 1 2019

cảm ơn bạn Tuấn Anh nhiều nhé

18 tháng 2 2019

\(B=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...-\frac{1}{3^{51}}\)

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...-\frac{1}{3^{50}}\)

\(4B=-1-\frac{1}{3^{51}}\)

\(B=\frac{-1-\frac{1}{3^{51}}}{4}\)

\(B=\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

\(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)

\(3B+B=\left(-1+\frac{1}{3}-...-\frac{1}{3^{50}}\right)+\left(-\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\right)\)

\(4B=-1-\frac{1}{3^{51}}\)

\(B=\frac{-1-\frac{1}{3^{51}}}{4}\)

hok tốt!!

11 tháng 2 2018

\(B=-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{50}}-\frac{1}{3^{51}}\)

=> \(3B=-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{49}}-\frac{1}{3^{50}}\)

=> \(4B=-1-\frac{1}{3^{51}}=>B=-\frac{1+\frac{1}{3^{51}}}{4}\)