\(\sin57=\cos?;\cos66=?;\tan77=\cot?;\cot57=?\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2021

\(sin57^0=cos\left(90^0-57^0\right)=cos33^0\)

\(cos66^0=cos\left(90^0-66^0\right)=cos24^0\)

\(tan77^0=cot\left(90^0-77^0\right)=cot13^0\)

\(cot57^0=tan\left(90^0-57^0\right)=tan33^0\)

Bài 3: 

a: cos B=0,8 nên AC/BC=4/5

=>AC=8cm

=>AB=6cm

b: sin C=cos B=4/5

cos C=3/5

tan C=4/3

cot C=3/4

29 tháng 9 2019

1+cot a=1+cos a/sin a =(sin a+cos a)/sin a =>sin2 a/(1+cot a)=sin3 a/(sin a+cos a)

1+tan a= 1+ sin a/cos a = (cos a+sin a)/cos a => cos2 a/(1+tan a)=cos3 a(sin a+cos a)

biểu thức là sin a.cos a +(sin3 a+cos3 a)(sin a+cos a)=sina.cosa + sin2a-sina.cosa+cos2a=         sin2a+cos2a

5 tháng 11 2017

Ta có thể tìm các bội của một số khác 0 bằng cách nhân số đó lần lược cho 1, 2, 3, …

Ví dụ :

B(5) = {5.1, 4.2, 5.3, …} = {5, 10, 15, …}

Ta có thể tìm các ước của một số a (a > 1) bằng cách lần lược chia số a cho số tự nhiên từ 1 đến a để xét xem a chia hết cho những số nào, khi đó các số ấy là ước của a.

5 tháng 11 2017

 a)sin^2+cos^2=1 
=>cos=can1-sin^2=can1-0,6^2=0,8 
tan=sin/cos=0,75 
cotg=1/tan=4/3 
b)tuong tu cau a 
sin=can1-cos^2=can(5/9) 
tan=sin/cos=(can5)/2 
cotg=2/can5 
c)1+tan^2=1/cos^2 
=>cos=1/(1+tan^2)=1/5 
sin=can1-cos^2=can(24/25) 
cotg=1/2 

bạn tham khảo nha

28 tháng 5 2019

GIup minh di ma!

28 tháng 5 2019

Làm ơn có ai giúp mìn vs! Mìn sắp toi rùi !

16 tháng 9 2017

\(\cos B=\frac{AB}{BC}=0,8\)  mà  \(\sin C=\frac{AB}{BC}=\Rightarrow\sin C=0,8\)

Theo bài ra ta có :

\(\sin C^2+\cos C^2=\frac{AB}{BC}^2+\frac{AC}{BC}^2\)

\(=\frac{\left(AB^2+AC^2\right)}{BC^2}\)

\(=\frac{BC^2}{BC^2}\)

\(=1\)

\(\Rightarrow\cos C^2=1-\sin C^2=1-0,8^2=0,36\)

\(\Rightarrow\cos C=0,6\)hoặc \(\cos C=-0,6\)( loại vì C là một góc nhọn )

\(\Rightarrow\cos C=0,6\)

\(\Rightarrow\tan C=\frac{0,8}{0,6}=\frac{4}{3};\cot C=\frac{0,6}{0,8}=0,75\)

Vậy : \(\cos C=0,6\)\(\tan C=\frac{4}{3}\)và \(\cot C=0,75\)

16 tháng 9 2017

ta co : \(\sin^2B+\cos^2B=1\)

\(\Rightarrow\sin^2B=1-\cos^2B\)

\(\Rightarrow\sin^2B=1-\left(0,8\right)^2\)

\(\Rightarrow\sin^2B=1-0,64\)

\(\Rightarrow\sin^2B=0,36\)

\(\Rightarrow\sin B=0,6\)

ta co:   \(\tan B=\frac{\sin B}{\cos B}\)hay \(\tan B=\frac{0,6}{0,8}\)

\(\Rightarrow\tan B=0,75\)

ta co :  \(\cot B=\frac{\cos B}{\sin B}\)hay \(\cot B=\frac{0,8}{0,6}\)

\(\Rightarrow\cot B=\frac{4}{3}\)

+) \(B+C=90^0\)

\(\Rightarrow\sin B=\cos C=0,6\)

\(\Rightarrow\cos B=\sin C=0,8\)

\(\Rightarrow\tan B=\cot C=0,75\)

\(\Rightarrow\cot B=\tan C=\frac{4}{3}\)