Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
\(\frac{3}{5}-\)\(\frac{1}{3}\text{x}=\frac{1}{2}\)
\(\frac{1}{3}x=\frac{1}{2}+\frac{3}{5}\)
\(\frac{1}{3}x=\frac{11}{10}\)
\(x=\frac{11}{10}:\frac{1}{3}=\frac{11}{10}\text{x}\frac{3}{1}\)
\(x=\frac{33}{10}\)
1/2 x 25 + 0,5 x 74 + 50/100
= 0,5 x 25 + 0,5 x 74 + 0,5
= 0,5 x 25 + 0,5 x 74 + 0,5 x 1
= 0,5 x ( 25 + 74 + 1 )
= 0,5 x 100
= 50
a)13x3x32,27+67,63x39
=39x32,27+67,63x39
=39x(32,27+67,63)
=39x100
=3900
b,= 1- [ 1/2 x 1/3 x1/4 x..... x 1/100 ]
=1/2 x 2/3 x 3/4 x .......x 99/100
= 1x2x3x......x99 / 2x3x4x...... x100 [ rút gọn ]
= 1/100
a) \(\frac{3}{5}+25-\frac{1}{5}=\left(\frac{3}{5}-\frac{1}{5}\right)+25=\frac{2}{5}+25=\frac{2}{5}+\frac{125}{5}=\frac{127}{5}\)
b) \(13\times3\times32,27+67,63\times39=39\times32,27+67,63\times39\)
\(=39\times\left(32,27+67,63\right)\)
\(=39\times99,9=3196,8\)
(Bạn xem lại đề nhé)
c) \(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)\times....\times\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times.....\times\frac{99}{100}\)
\(=\frac{1\times2\times3\times...\times99}{2\times3\times4\times....\times100}=\frac{1}{100}\)
a, \(\frac{3}{5}+25-\frac{1}{5}=\frac{127}{5}\)
b, \(\text{13 x 3 x 32,27 + 67,63 x 39 =}3896,1\)
............................
thank for watching me do homework
\(\frac{2}{5}\)x m + 25% x m + m = 16,5
m x ( \(\frac{2}{5}\) + 25% + 1 ) = 16,5
m x \(\frac{33}{20}\)= 16,5
m = 16,5 : \(\frac{33}{20}\)
m = 10
\(\frac{24}{400}+50\%+\frac{3}{100}+25\%\)
\(=0,24\%+50\%+0,03\%+25\%\)
\(=50,52\%\)
Bài 3 :
\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+....+\frac{1}{99\times100}\)
Ta có : \(\frac{1}{1\times2}=\frac{2-1}{1\times2}=\frac{2}{1\times2}-\frac{1}{1\times2}=1-\frac{1}{2}\)
\(\frac{1}{2\times3}=\frac{3-2}{2\times3}=\frac{3}{2\times3}-\frac{2}{2\times3}=\frac{1}{2}-\frac{1}{3}\)
\(\frac{1}{99\times100}=\frac{100-99}{99\times100}=\frac{100}{99\times100}-\frac{99}{99\times100}=\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{1}{10\times11}+\frac{1}{11\times12}+...+\frac{1}{38\times39}\)
Ta có : \(\frac{1}{10\times11}=\frac{11-10}{10\times11}=\frac{11}{10\times11}-\frac{10}{10\times11}=\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{11\times12}=\frac{12-11}{11\times12}=\frac{12}{11\times12}-\frac{11}{11\times12}=\frac{1}{11}-\frac{1}{12}\)
\(\frac{1}{38\times39}=\frac{39-38}{38\times39}=\frac{39}{38\times39}-\frac{38}{38\times39}=\frac{1}{38}-\frac{1}{39}\)
\(\frac{1}{39\times40}=\frac{40-39}{39\times40}=\frac{40}{39\times40}-\frac{39}{39\times40}=\frac{1}{39}-\frac{1}{40}\)
\(\Rightarrow B=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+....+\frac{1}{38}-\frac{1}{39}+\frac{1}{39}-\frac{1}{40}\)
\(B=\frac{1}{10}-\frac{1}{40}\)
\(B=\frac{3}{40}\)
3.
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(B=\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{38.39}+\frac{1}{39.40}\)
\(B=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{38}-\frac{1}{39}+\frac{1}{39}-\frac{1}{40}\)
\(B=\frac{1}{10}-\frac{1}{40}\)
\(B=\frac{3}{40}\)
A)2013x3,64+7,26x2013–2013x10,89
=2013x(3,64+7,26–10,89)
=2013x0,01
=20,13
B) \(3\frac{1}{4}\) giờ —1 giờ 15 phút
=\(3\frac{1}{4}\)giờ —\(1\frac{1}{4}\)giờ
= 2 giờ
a) 2013 x 3,64 + 7,26 x 2013 - 2013 x 10,89
= ( 3,64 + 7,26 -10,89 ) x 2013
= 0,01 x 2013
= 20,13.