K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2015

 

S = (-3)+ (-3)+ (-3)+ (-3)+......+ (-3)2015

=>-3S= (-3)+ (-3)+ (-3)+......+ (-3)2015+(-3)2016

=>-3S-S=[ (-3)+ (-3)+ (-3)+......+ (-3)2015+(-3)2016]-[ (-3)+ (-3)+ (-3)+ (-3)+......+ (-3)2015]

=>-4S=(-3)+ (-3)+ (-3)+......+ (-3)2015+(-3)2016 -(-3)- (-3)- (-3)- (-3)-......- (-3)2015

=>-4S=(-3)2016-(-3)0

=>-4S=(-3)2016-1

=>S=\(\frac{\left(-3\right)^{2016}-1}{-4}=\frac{3^{2016}-1}{-4}\)

 

19 tháng 8 2016

S=1-3+32-33+...+32014-32015

=>3S=3-32+...+32015-32016

=>3S+S=4S=(3-32+...+32015-32016)+(1-3+...+32014-32015)

=>4S=-32016+1

=>S=\(-\frac{3^{2016}-1}{4}\)

19 tháng 8 2016

\(S=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+........+\left(-3\right)^{2015}\)

\(\Rightarrow-3S=\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+\left(-3\right)^4+......+\left(-3\right)^{2016}\)

\(\Rightarrow-4S=\left[\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2016}\right]-\left[\left(-3\right)^0+\left(-3\right)^1+...+\left(-3\right)^{2015}\right]\)

\(\Rightarrow-4S=\left(-3\right)^{2016}-\left(-3\right)^0\Rightarrow-4S=3^{2016}-1\Rightarrow S=\frac{3^{2016}-1}{-4}\)

12 tháng 6 2017

Ta có :

\(S=\left(-3\right)^0+\left(-3\right)+\left(-3\right)^2+..................+\left(-3\right)^{2015}\)

\(\Rightarrow\left(-3\right).S=\left(-3\right)+\left(-3\right)^2+\left(-3\right)^3+..............+\left(-3\right)^{2015}+\left(-3\right)^{2016}\)

\(\Rightarrow\left(-3\right).S-S=\left[\left(-3\right)+\left(-3\right)^2+..............+\left(-3^{2015}\right)+\left(-3\right)^{2016}\right]-\left[\left(-3\right)^0+\left(-3\right)+...........+\left(-3\right)^{2015}\right]\)\(\Rightarrow\left(-4\right)S=\left(-3\right)^{2016}-\left(-3\right)^0\)

\(\Rightarrow\left(-4\right).S=\left(-3\right)^{2016}-1\)

\(\Rightarrow S=\dfrac{\left(-3\right)^{2016}-1}{-4}\)

\(\Rightarrow S=\dfrac{3^{2016}-1}{-4}\)

28 tháng 10 2016

Đặt \(A=1+3+3^2+3^3+....+3^{2015}-3^{2016}\)

\(B=1+3+3^2+3^3+....+3^{2015}\)

Ta có:

\(B=1+3+3^2+...+3^{2015}\)

\(\Rightarrow3B=3+3^2+3^3+...+3^{2016}\)

\(\Rightarrow3B-B=\left(3+3^2+3^3+...+3^{2016}\right)-\left(1+3+3^2+...+3^{2015}\right)\)

\(\Rightarrow2B=3^{2016}-1\)

\(\Rightarrow B=\frac{3^{2016}-1}{2}\)

\(\Rightarrow A=\frac{3^{2016}-1}{2}-3^{2016}\)

 

10 tháng 9 2017

S = (-3)0 + (-3)1 + (-3)2 + ... + (-3)2015

=> -3S = (-3)1 + (-3)2 + ... + (-3)2016

=> -4S = (-3)2016 - 1

=> S = \(\dfrac{3^{2016}+1}{4}\)

5 tháng 12 2015

32010- ( 32009 + 32008 + ... + 3 + 1 )

Đặt A = 1 + 3 + ... + 32009

=> 3A = 3 + 32 + ... + 32010

=> 3A - A = 32010 - 1

Nên 32010 - ( 32010 - 1 ) = 1

24 tháng 10 2021

Mình nhầm xíu :

Tính giá trị của biểu thức : 

P = x2015 + y2015 + z2015

24 tháng 10 2021

   Ta có : x + y + z = 1

=> (x + y + z)3 = 1

=> x3 + y3 + z3 + 3(x + y)(y + z)(z + x) = 1

=> (x + y)(y + z)(z + x) = 0

<=> x = -y hoặc y = -z hoặc z = -x

Nếu x = -y => x = y = 0 ; z = 1

Nếu y = -z => y = z = 0 ; x = 1

Nếu z = -x => z = x = 0 ; y = 1

Khi đó P = 1

19 tháng 9 2016

a) Đặt \(A=2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2-2^1\)

\(\Rightarrow2A=2^{2017}-2^{2016}+2^{2015}-2^{2014}+...+2^3-2^2\)

\(\Rightarrow2A+A=\left(2^{2017}-2^{2015}+2^{2014}-2^{2013}+...+2^3-2^2\right)+\left(2^{2016}-2^{2015}+2^{2014}-2^{2013}+...+2^2+2^1\right)\)

\(\Rightarrow3A=2^{2017}+1\)

\(\Rightarrow A=\frac{2^{2017}+1}{3}\)

b) Đặt \(B=3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\)

\(\Rightarrow3B=3^{1001}-3^{1000}+3^{999}-3^{997}+...+3^3-3^2+3^1\)

\(\Rightarrow3B+B=\left(3^{1001}-3^{1000}+3^{999}-3^{998}+...+3^3-3^2+3^1\right)+\left(3^{1000}-3^{999}+3^{998}-3^{997}+...+3^2-3^1+3^0\right)\)

\(\Rightarrow4B=3^{1001}+3^0\)

\(\Rightarrow B=\frac{3^{1001}+1}{4}\)

 

19 tháng 9 2016

a) Đặt A = 22016 - 22015 + 22014 - 22013 + ... + 22 - 21

2A = 22017 - 22016 + 22015 - 22014 + ... + 23 - 22

2A + A = (22017 - 22016 + 22015 - 22014 + ... + 23 - 22) + (22016 - 22015 + 22014 - 22013 + ... + 22 - 21)

3A = 22017 - 21

3A = 22017 - 2

\(A=\frac{2^{2017}-2}{3}\)

b) lm tương tự câu a