K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

Đặt \(A=1+3+3^2+3^3+....+3^{2015}-3^{2016}\)

\(B=1+3+3^2+3^3+....+3^{2015}\)

Ta có:

\(B=1+3+3^2+...+3^{2015}\)

\(\Rightarrow3B=3+3^2+3^3+...+3^{2016}\)

\(\Rightarrow3B-B=\left(3+3^2+3^3+...+3^{2016}\right)-\left(1+3+3^2+...+3^{2015}\right)\)

\(\Rightarrow2B=3^{2016}-1\)

\(\Rightarrow B=\frac{3^{2016}-1}{2}\)

\(\Rightarrow A=\frac{3^{2016}-1}{2}-3^{2016}\)

 

28 tháng 8 2015

 

S = (-3)+ (-3)+ (-3)+ (-3)+......+ (-3)2015

=>-3S= (-3)+ (-3)+ (-3)+......+ (-3)2015+(-3)2016

=>-3S-S=[ (-3)+ (-3)+ (-3)+......+ (-3)2015+(-3)2016]-[ (-3)+ (-3)+ (-3)+ (-3)+......+ (-3)2015]

=>-4S=(-3)+ (-3)+ (-3)+......+ (-3)2015+(-3)2016 -(-3)- (-3)- (-3)- (-3)-......- (-3)2015

=>-4S=(-3)2016-(-3)0

=>-4S=(-3)2016-1

=>S=\(\frac{\left(-3\right)^{2016}-1}{-4}=\frac{3^{2016}-1}{-4}\)

 

13 tháng 12 2016

A= 3 + 3+ 3+ ... + 32016

3A=     3+ 33 + ... + 32016 + 32017

3a-a= 32017 - 3

2a= 32017 - 3

a= (32017 - 3) : 2

13 tháng 12 2016

a, 3A = 32 + 33 + 34 +...+ 32016 + 32017

3A - A = 2A = ( 32+ 33 + 34 +...+ 32016 + 32017) - (3+ 32 + 33 +...+ 32015 + 32016)

2A = 32+ 33 + 34 +...+ 32016 + 32017 - 3- 32 - 33 -...- 32015 - 32016

2A = 32017 - 3

2A = 3(32016 - 1)

A = 1,5 ( 32016 -1)

26 tháng 9 2016

Ta có:

\(\left(2015^{2015}+2016^{2015}\right)^{2016}=\left(2015^{2015}+2016^{2015}\right)^{2015}.\left(2015^{2015}+2016^{2015}\right)\)

\(>\left(2015^{2015}+2016^{2015}\right)^{2015}.2016^{2015}=\left[\left(2015^{2015}+2016^{2015}\right)2016\right]^{2015}\)

\(>\left(2015^{2015}.2015+2016^{2015}.2016\right)^{2015}=\left(2015^{2016}+2016^{2016}\right)^{2015}\)

Vậy \(\left(2015^{2015}+2016^{2015}\right)^{2016}>\left(2015^{2016}+2016^{2016}\right)^{2015}\)

23 tháng 9 2016

1. Ta sẽ chứng minh \(2015^{2016}>2016^{2015}\)

\(\Leftrightarrow2016^{2015}-2015^{2016}< 0\Leftrightarrow2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016.2016^{2016}-2015.2016^{2016}-2016.2015^{2016}< 0\)

\(\Leftrightarrow2016\left(2016^{2016}-2015^{2016}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016\left(2016^{2015}+2016^{2014}.2015+...+2015^{2015}\right)< 2015.2016^{2016}\)

\(\Leftrightarrow2016^{2015}.2015+...+2016.2015^{2015}< 2014.2016^{2016}\)

\(\Leftrightarrow2016^{2014}.2015+2016^{2013}.2015^2+...+2015^{2015}< 2014.2016^{2015}\)

\(\Leftrightarrow2015^{2015}< \left(2016^{2015}-2015.2016^{2014}\right)+\left(2016^{2015}-2015^2.2016^{2013}\right)\)

\(+...+\left(2016^{2015}-2015^{2014}.2016\right)\)

\(\Leftrightarrow2015^{2015}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Lại có \(2015^{2015}=2014.2015^{2014}+2015^{2014}< 2014.2016^{2014}+2015^{2014}\)

Mà \(2015^{2014}< 2013.2016^{2014}.2015\)

nên \(2015^{2014}< 2014.2016^{2014}+2013.2016^{2014}.2015+...+2016.2015^{2013}\)

Vậy \(2015^{2016}>2016^{2015}.\)

21 tháng 3 2019

Tham khảo:Câu hỏi của Victor JennyKook - Toán lớp 7 - Học toán với OnlineMath

28 tháng 10 2018

Ta có:

\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)

\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow6A=3+1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow4A=3-\frac{101}{3^{99}}+\frac{100}{3^{100}}=3-\frac{203}{3^{100}}\)

\(\Rightarrow A=\frac{3-\frac{203}{3^{100}}}{4}=\frac{3}{4}-\frac{203}{3^{100}.4}< \frac{3}{4}\Rightarrowđpcm\)

Vậy \(A< \frac{3}{4}\)