K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2020

Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

\(\Rightarrow3A=3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}\)

\(2A=3A-A\)

\(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)

\(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^{2007}}-\frac{1}{3^{2008}}\)

\(=1-\frac{1}{3^{2008}}\)

\(2A=1-\frac{1}{3^{2008}}\Rightarrow A=\frac{1-\frac{1}{3^{2008}}}{2}\)

2 tháng 10 2020

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

\(\Leftrightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}\)

\(\Leftrightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)

\(\Leftrightarrow2A=1-\frac{1}{3^{2008}}\)

\(\Leftrightarrow2A=\frac{3^{2008}-1}{3^{2008}}\)

\(\Leftrightarrow A=\frac{3^{2008}-1}{3^{2008}}\div2\)

\(\Leftrightarrow A=\frac{3^{2008}-1}{2.3^{2008}}\)

24 tháng 11 2016

Tìm max của biểu thức: 1 3 4 2 + − x x .

22 tháng 11 2017

A/B=1/2009

7 tháng 1 2016

giải dùm mk với. chiều ni mk thi học kì. bài cuối sợ là bài này lắm 

19 tháng 6 2016

ta có tử số bằng :{2008 +2007/2 +... 2+1/2008} = {2007/2 +1 +2006/3+1 +...+1/2008+1} = {2009/2 +2009/3 +...+2009/2008} =

2009x{1/2 +1/3 +1/4+...+1/2009} . Vậy A = 2009

22 tháng 9 2021

gb n gnfhgjjhgxjdycfjhgcjtujxs

17 tháng 1 2016

lay ong di qua , lay ba di lai cho xin cai tick

17 tháng 1 2016

tick vo cai dau tui may