Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+....+\dfrac{1}{78}\)
⇒\(\dfrac{1}{2}A=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\)
⇒\(\dfrac{1}{2}A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{12.13}\)
⇒\(\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}+...+\dfrac{1}{12}-\dfrac{1}{13}\)
⇒\(\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{13}\)\(=\dfrac{11}{26}\)
⇒\(A=\dfrac{11}{26}:\dfrac{1}{2}\)
⇒\(A=\dfrac{11}{13}\)
a) 2 x 12 x 43 + 3 x 32 x 8 + 25 x 6 x4
=(2 x12) x43+(3 x8) x32+(6 x4) x25
=24 x43+24 x32+ 24 x25
=24 x(43+32+25)
=24 x100
=2400
b) 78 x 31 + 78 x 24 + 17 x 78 + 28 x 78
=78x(31+24+17+28)
=78x100
=7800
Bài 3:
= 1- 1/2 + 1/2 -1/3 +...+ 1/98 -1/99
= 1- 1/99
= 98/99
Bài 4:
= 1/2*3 + 1/3*4 + 1/4*5 +...+ 1/10*11
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +...+ 1/10 - 1/11
= 1/2 - 1/11= 9/22
1/3+1/6+1/10+1/15+......+1/4950
=2x(1/6+1/12+1/20+1/30+……+1/9900)
=2x(1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+……+1/99-1/100)
=2x(1/2-1/100)
=1-1/50
=49/50
**** nhé
bạn ơi tại sao bạn lại ra kết quả nh vậyke chi tiết hơn được không vậy
Đặt A = \(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+10}\)
\(A=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{10.11}{2}}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(A=2\cdot\frac{9}{22}=\frac{9}{11}\)
Vậy A = \(\frac{9}{11}\)
Lời giải:
$A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{78}$
$A:2=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{156}$
$A:2=\frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+....+\frac{1}{12\times 13}$
$A:2=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+....+\frac{13-12}{12\times 13}$
$A:2=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{12}-\frac{1}{13}$
$A:2=1-\frac{1}{13}=\frac{12}{13}$
$A=\frac{12}{13}\times 2=\frac{24}{13}$
Đặt \(A=\) \(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{78}\)
\(\dfrac{A}{2}=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{156}\)
\(\dfrac{A}{2}=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+...+\dfrac{1}{12\times13}\)
\(\dfrac{A}{2}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{12}-\dfrac{1}{13}\)
\(\dfrac{A}{2}=1-\dfrac{1}{13}\)
\(\dfrac{A}{2}=\dfrac{13}{13}-\dfrac{1}{13}\)
\(\dfrac{A}{2}=\dfrac{12}{13}\)
\(A=\dfrac{12}{13}\times2\)
\(A=\dfrac{24}{13}\)