Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=\)\(1-\frac{1}{2014}\)
\(=\)\(\frac{2014}{2014}-\frac{1}{2014}\)
\(=\)\(\frac{2013}{2014}\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}=\frac{2013}{2014}\)
Dấu \(.\) là dấu nhân nhé
Chúc bạn học tốt ~
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{2013\times2014}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}\)
\(=\frac{2013}{2014}\)
CHÚC BN HỌC TỐT!!!!!
Ta có :
\(C=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{13.14}\)
\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{13}-\frac{1}{14}\)
\(C=\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(1-\frac{1}{14}\right)\)
\(C=1-\frac{1}{14}\)
\(C=\frac{14}{14}-\frac{1}{14}\)
\(C=\frac{14-1}{14}\)
\(C=\frac{13}{14}\)
Vậy \(C=\frac{13}{14}\)
Chúc bạn học tốt ~
\(C=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{13\cdot14}\)
\(C=\frac{2-1}{1\cdot2}+\frac{3-2}{2\cdot3}+\frac{4-3}{3\cdot4}+....+\frac{14-13}{13\cdot14}\)
\(C=\frac{2}{1\cdot2}-\frac{1}{1\cdot2}+\frac{3}{2\cdot3}-\frac{2}{2\cdot3}+\frac{4}{3\cdot4}-\frac{3}{3\cdot4}+....+\frac{14}{13\cdot14}-\frac{13}{13\cdot14}\)
\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{13}-\frac{1}{14}\)
\(C=1-\frac{1}{14}\)
\(C=\frac{13}{14}\)
dấu "." là dấu nhân nhs
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
k cho mình nha bạn
Ta có: 1/1x2 + 1/2x3 + 1/3x4 +...+ 1/X x (X + 1) = 499/500
=> 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/X - 1/(X + 1) = 499/500
=> 1 - 1/(X + 1) = 499/500
=> 1/(X + 1) = 1 - 499/500
=> 1/(X + 1) = 1/500
=> X + 1 = 500
=> X = 500 - 1
=> X = 499
Đáp số: X = 499
y=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
y=\(1-\frac{1}{6}\)
y=\(\frac{5}{6}\)
\(\Rightarrow y=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(\Rightarrow y=1-\frac{1}{6}=\frac{5}{6}\)
Vậy \(y=\frac{5}{6}\)
\(a.\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=\frac{1}{2}-\frac{1}{5}\)
\(=\frac{3}{10}\)
\(b.\frac{2}{2\cdot3}+\frac{2}{3\cdot4}+\frac{2}{4\cdot5}\)
\(=2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{5}\right)\)
\(=2\cdot\frac{3}{10}=\frac{3}{5}\)
\(c.\frac{1}{2\cdot3}+\frac{2}{3\cdot5}+\frac{3}{5\cdot8}\)
\(=\frac{1}{6}+\frac{2}{15}+\frac{3}{40}\)
\(=\frac{3}{8}\)
k nha 500 AE
a, \(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)
\(=\frac{1}{2}-\frac{1}{5}\)
\(=\frac{3}{10}\)
b, \(\frac{2}{2\times3}+\frac{2}{3\times4}+\frac{2}{4\times5}\)
\(=\frac{3-2}{2\times3}+\frac{4-3}{3\times4}+\frac{5-4}{4\times5}\)
\(=\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\right)\times\frac{2}{1}\)
\(=\left(\frac{1}{2}-\frac{1}{5}\right)\times\frac{2}{1}\)
\(=\frac{3}{10}\times\frac{2}{1}\)
\(=\frac{3}{5}\)
c, \(\frac{1}{2\times3}+\frac{2}{3\times5}+\frac{3}{5\times8}\)
\(=\frac{3-2}{2\times3}+\frac{5-3}{3\times5}+\frac{8-5}{5\times8}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{3}{8}\)
1/1x2+1/2x3+1/3x4+..+1/9x10
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5+...-1/10
=1-1/10
=9/10
Mình không thể giải thích được nhưng kết quả chắc chắn là : \(\frac{8}{9}\)
đặt A=1/1×2+1/2×3+1/3×4+