\(\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{2015x2017}+\frac{1}{2017x2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

           p=1/(3*5)+1/(5*7)+.....+1/(2015*2017)+1/(2017*2019)

<=> p = 1/3-1/5+1/5-1/7+1/7-......+1/2017-1/2019

<=> p = 1/3 - 1/2019

<=> p = 224/673

12 tháng 8 2018

\(P=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2015.2017}+\frac{1}{2017.2019}\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2019}\right)\)

\(=\frac{112}{673}\)

8 tháng 7 2016

\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{9.11}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{11}\right)\)

\(=\frac{1}{2}.\frac{10}{11}\)

\(=\frac{5}{11}\)

8 tháng 7 2016

\(=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+....+\frac{2}{9\times11}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{11}\right)\)

\(=\frac{1}{2}\times\frac{10}{11}\)

\(=\frac{5}{11}\)

13 tháng 7 2015

\(S.2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)

\(S.2=\frac{1}{1}-\frac{1}{11}\)

\(S.2=\frac{10}{11}\)

\(S=\frac{10}{11}:2\)

\(S=\frac{5}{11}\)

5 tháng 1 2017

S = 5/11

23 tháng 6 2017

\(\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\right)x=\frac{9}{7}\)

\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{19}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)

\(\left[\frac{1}{2}\left(\frac{1}{3}-\frac{1}{21}\right)\right]x=\frac{9}{7}\)

\(\left(\frac{1}{2}.\frac{2}{7}\right)x=\frac{9}{7}\)

\(\frac{1}{7}.x=\frac{9}{7}\)

\(x=\frac{9}{7}\div\frac{1}{7}\)

\(x=9\)

Vậy ...

18 tháng 5 2019

\(A=\frac{1}{3}-\frac{1}{17}=\frac{14}{51}\)

cách làm thì tự biết

trên mạng đầy

kết quả đúng phải là 7/51 chứ bn 

mk cần cách trình bày thôi 

 câu trả lời của bn hơi lạnh nhạt tí ^.^

5 tháng 8 2016

sao giống toán lớp 7 vậy ????

5 tháng 8 2016

đó là toán nâng cao lớp 5

9 tháng 6 2019

1. Đ/S: 99/100

2. Đ/S: 38/123

9 tháng 8 2018

\(A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{17\cdot19}\)

\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{17}-\frac{1}{19}\)

\(A=\frac{1}{3}-\frac{1}{19}\)

\(A=\frac{16}{57}\)

Dấu "." là dấu nhân nhá ^^

9 tháng 8 2018

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{17\cdot19}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{17}-\frac{1}{19}\)

\(=\frac{1}{3}-\frac{1}{19}\)

\(=\frac{16}{57}\)

9 tháng 6 2018

\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(\Rightarrow M=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow M=1-\frac{1}{100}\)

\(\Rightarrow M=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

\(b,N=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\Rightarrow N=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{97}-\frac{1}{99}\right)\)

\(\Rightarrow N=\frac{1}{2}.\left(1-\frac{1}{99}\right)=\frac{1}{2}.\frac{98}{99}\)

\(\Rightarrow N=\frac{1.98}{2.99}=\frac{49.2}{2.99}=\frac{49}{99}\)

8 tháng 6 2018

\(a,M=1-\frac{1}{100}=\frac{99}{100}\)

\(b=2N=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+...+\frac{2}{97x99}\)

                  \(=1-\frac{1}{99}=\frac{98}{99}\)

   =>\(N=\frac{98}{99}:2=\frac{49}{99}\)

11 tháng 7 2017

\(\frac{1}{5.7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+...+\frac{1}{2009\cdot2011}+\frac{1}{x}=\frac{1}{5}\cdot0,5\)

\(=\frac{7-5}{5\cdot7}+\frac{9-7}{7\cdot9}+\frac{11-9}{9\cdot11}+...+\frac{2011-2009}{2009\cdot2011}+\frac{1}{x}=\frac{1}{10}\)

\(=\left[\frac{1}{2}\cdot\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{2009}-\frac{1}{2011}\right)\right]+\frac{1}{x}=\frac{1}{10}\)

\(=\left[\frac{1}{2}\cdot\left(\frac{1}{5}-\frac{1}{2011}\right)\right]+\frac{1}{x}=\frac{1}{10}\)

\(=\left(\frac{1}{2}\cdot\frac{2006}{10055}\right)+\frac{1}{x}=\frac{1}{10}\)

\(=\frac{1003}{10055}+\frac{1}{x}=\frac{1}{10}\)

\(\Rightarrow\frac{1}{x}=\frac{1}{10}-\frac{1003}{10055}\)

\(\frac{1}{x}=\frac{1}{4022}\)

\(\Rightarrow x=1\div\frac{1}{4022}=4022\)