Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S = | 1 | + | 1 | + … + | 1 |
1 . 3 | 3 . 5 | 99 . 101 |
Ta có:
1 | - | 1 | = | 3 - 1 | = | 2 |
1 | 3 | 1 . 3 | 1 . 3 |
Suy ra:
1 | = | 1 | ( | 1 | - | 1 | ) |
1 . 3 | 2 | 1 | 3 |
Tương tự ta có:
1 | = | 1 | ( | 1 | - | 1 | ) |
3 . 5 | 2 | 3 | 5 |
1 | = | 1 | ( | 1 | - | 1 | ) |
5 . 7 | 2 | 5 | 7 |
. . .
1 | = | 1 | ( | 1 | - | 1 | ) |
99 . 101 | 2 | 99 | 101 |
Cộng các vế của các đẳng thức trên ta được:
- Vế trái: tổng S
- Vế phải: số thứ hai ở dòng trên sẽ triệt tiêu với số thứ nhất ở dòng dưới ⇒ vế phải còn lại số thứ nhất của dòng đầu tiên trừ đi số thứ hai của dòng cuối cùng.
S = | 1 | ( | 1 | - | 1 | ) |
2 | 1 | 101 |
S = | 1 | 101 - 1 | |
2 | 101 |
S = | 100 |
202 |
Rút gọn phân số trên (chia cả tử và mẫu cho 2) ta được:
Tổng ban đầu = | 50 |
101 |
a) A = 2 + 4 + 6 + 8 + ... + 1000
Ta có : A = 2 + 4 + 6 + 8 + ... + 1000 ( có 500 số )
= (1000 + 2) . 500 : 2 = 250500
c) \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}\)
Nếu làm cách lớp 5:
Ta có: = (1 -3) + ( 5 -7) + ( 9 - 11) + (13 - 15) + ( 17 - 19) + ...... +(97 - 99) + 101
= -1 + -1 + ........ + -1 + 101
= -50 + 101
= 51
1-3+5-7+9-11+13-15+17-19+...+97-99+101=(-2)+(-2)+(-2)+(-2)+(-2)+.....+(-2)+101 [50 giá trị -2]
=(-2)*100+101=-99
1) A=1-2+3-4+5-6+.....+99-100+101?
Giải
A=1-2+3-4+5-6+.....+99-100+101.
Ta viết lại tổng như sau:
A = 101 - 100 + 99 - 98 + ... + 5 - 4 + 3 - 2 + 1
A = 1 + 1 + ... + 1 + 1 + 1
Số phép trừ trong dãy tính là:
( 101 - 1 ) : 2 = 50 ( phép trừ )
Kết quả dãy số là:
1 x 50 + 1 = 51
Vậy:
A=1-2+3-4+5-6+.....+99-100+101.
A= 51
2) B=1+11+21+...+991
=(1+991)+(2+998)+...
=992 x 50
=4960
\(1.3+2.4+3.5+...+99.101\)
\(=3+8+15+...+9999\)
Số số hạng \(=\left(9999-3\right):2+1=4999\)
Tổng \(=\left(9999+3\right).4999:2=24999999\)
( 0,1+ 0,2+...+0.9)+(0,10+0,11+...+0,19
=4,5+1,45=5,95
S = (1 + 3 + 5 + 7+ 9 + 99 + 101) - ( 2 + 4 + 6 + ...+ 78 + 80)
Đặt A = 1 + 3 + 5 +7 + 9 +...+99 + 101
B = 2 + 4 + 6 + ...+ 78 + 80
A = 1 + 3 + 5 + 7 + 9+...+ 101
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (101 - 1 ): 2 + 1 = 51 (số )
Tổng A = (101 + 1)\(\times\) 51 : 2 = 2601
B = 2 + 4 + 6 + ...+ 78 + 80
Dãy số trên là dãy số cách đều với khoảng cách là: 4 - 2 = 2
Số số hạng của dãy số trên là: (80 - 2): 2 + 1 = 40
Tổng B = (80 + 2)\(\times\) 40: 2 = 1640
S = 2601 - 1640
S = 961
Link nè lên google search nha!
https://olm.vn/hoi-dap/question/162533.html
A = \(\frac{1}{1\cdot3}\)+ \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\)+ ..... + \(\frac{1}{99.101}\)
= \(\frac{1}{2}\). ( \(\frac{1}{1.3}\)+ \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\)+ ...... + \(\frac{1}{99.101}\))
= \(\frac{1}{2}\). ( 1 - \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{5}\)+ \(\frac{1}{5}\)- \(\frac{1}{7}\)+ ........ + \(\frac{1}{99}\)- \(\frac{1}{101}\))
= \(\frac{1}{2}\). ( 1 - \(\frac{1}{101}\))
= \(\frac{1}{2}\). \(\frac{100}{101}\)= \(\frac{50}{101}\)
Thấy đúng thì cho mình một k nha!!!