\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{205}}{\frac{204}{1}+\frac{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2016

hề gặp bạn oy

 

7 tháng 9 2016

ò

bài kho quá à

29 tháng 6 2017

Ta có : \(\left(\frac{1}{49}-\frac{1}{2^2}\right)\left(\frac{1}{49}-\frac{1}{3^2}\right)\left(\frac{1}{49}-\frac{1}{4^2}\right).......\left(\frac{1}{49}-\frac{1}{40^2}\right)\)

\(=\left(\frac{1}{49}-\frac{1}{2^2}\right)\left(\frac{1}{49}-\frac{1}{3^2}\right)......\left(\frac{1}{49}-\frac{1}{7^2}\right)......\left(\frac{1}{49}-\frac{1}{40^2}\right)\)

\(=\left(\frac{1}{49}-\frac{1}{2^2}\right)\left(\frac{1}{49}-\frac{1}{3^2}\right)......0......\left(\frac{1}{49}-\frac{1}{40^2}\right)\)

\(=0\)

17 tháng 8 2019

\(a;\)

\(=0-1\)

\(=-1\)

17 tháng 8 2019

\(b;\)

\(=0-4\)

\(=-4\)

12 tháng 9 2019

1 Tính : 

a) \(A=\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)

\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{n}\)

\(=\frac{1}{n}\)

b) \(B=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)

\(=\frac{4}{1.5}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{\left(n-4\right).n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{\left(n-4\right).n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{n}\right)\)

\(=\frac{4}{5}-\frac{1}{5}+\frac{1}{n}\)

\(=\frac{3}{5}+\frac{1}{n}\)

c) \(C=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)

\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(\Rightarrow C=1-B\left(1\right)\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

Lấy 2B trừ B ta có : 

\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(B=1-\frac{1}{2^{10}}\left(2\right)\)

Thay (2) vào (1) ta có :

\(C=1-\left(1-\frac{1}{10}\right)\)

\(=1-1+\frac{1}{10}\)

\(=\frac{1}{10}\)

Vậy \(C=\frac{1}{10}\)

17 tháng 2 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+...+\frac{1}{2010}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\left(1+1+1+...+1\right)+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{1+\left(1+\frac{2009}{2}\right)+\left(1+\frac{2008}{3}\right)+...+\left(1+\frac{1}{2010}\right)}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2011.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\right)}\)

\(\Rightarrow A=\frac{1}{2011}\)

7 tháng 10 2019

\(A=\left(\frac{1}{125}-\frac{1}{1^3}\right).\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{100^3}\right)\)

\(A=\left(\frac{1}{125}-\frac{1}{1^3}\right).\left(\frac{1}{125}-\frac{1}{2^3}\right)...\left(\frac{1}{125}-\frac{1}{5^3}\right)...\left(\frac{1}{125}-\frac{1}{100^3}\right)\)

\(A=\left(\frac{1}{125}-\frac{1}{1^3}\right).\left(\frac{1}{125}-\frac{1}{2^3}\right)...0...\left(\frac{1}{125}-\frac{1}{100^3}\right)\)

\(\Rightarrow A=0\)

17 tháng 2 2017

\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+....+\left(\frac{1}{2010}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+....+\frac{2011}{2010}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\right)}\)

\(=\frac{1}{2011}\)