Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(A\) là tử (\(14x^2-8x+9\))
\(C\) là mẫu (\(3x^2+6x+9\))
Ta có:\(A\) =\(14x^2-8x+9\)
\(\Rightarrow A_{min}\)=\(\frac{55}{7}\)
Ta có: \(C\)=\(3x^2+6x+9\)
\(\Rightarrow C_{min}\)=6
Suy ra \(B_{min}\)=\(\frac{\left(\frac{55}{7}\right)}{6}\)=\(\frac{55}{42}\)
Vậy GTNN của B là \(\frac{55}{42}\)
Ta có : \(B=\frac{14x^2-8x+9}{3x^2+6x+9}=\frac{2\left(x^2+2x+3\right)+\left(12x^2-12x+3\right)}{3\left(x^2+2x+3\right)}\)
\(=\frac{12\left(x-\frac{1}{2}\right)^2}{3\left(x^2+2x+3\right)}+\frac{2}{3}\ge\frac{2}{3}\) . Dấu "=" xảy ra khi x = 1/2
Vậy Min B = 2/3 khi x = 1/2
A= X^2- 6X +9 + y^2 -22y + 121+ z^2+12z+ 36+2019
= (x-3)2+(y-11)2+(z+6)2+2019
Lại có (x-3)2+(y-11)2+(z+6)2\(\ge\)0
=> A\(\ge\)2019
Vậy Min A = 2019 <=> x= 3; y=11; z= -6
M = x4 - 6x3 + 10x2 - 6x + 9
M = (x2 - 6x + 9) + x4 - 6x3 + 9x2
M = (x - 3)2 + x2(x2 - 6x + 9)
M = (x - 3)2.(1 + x2)
Ta có:\(\left(x-3\right)^2\ge0;\left(1+x^2\right)\ge1\)
\(\Rightarrow M\ge1\)
Dấu 'x' xảy ra khi:
\(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy Mmin = 1 khi x = 3
Chúc bạn học tốt!!!
Mình giải lại từ dòng số 6 nhé!!!
=> M = 0
Dấu '=' xảy ra khi:
(x - 3)2 = 0 => x - 3 = 0
=> x = 3
Vậy Mmin = 0 khi x = 3
\(A=\dfrac{2}{6x-5-9x^2}=-\dfrac{2}{9x^2-6x+5}\\ =-\dfrac{2}{\left(3x^2\right)-2.3x.1+1+4}\\ =-\dfrac{2}{\left(3x-1\right)^2+4}\le-\dfrac{1}{2}\)
Max A = -1/2 khi x=1/3
Ta thấy: \(6x-5-9x^2\)
\(=-9x^2+6x-1-4\)
\(=-9\left(x^2-\dfrac{2x}{3}+\dfrac{1}{9}\right)-4\)
\(=-9\left(x-\dfrac{1}{3}\right)^2-4\le-4\forall x\)
\(=\dfrac{1}{-9\left(x+\dfrac{1}{3}\right)^2-4}\ge\dfrac{1}{4}\forall x\)
\(\Leftrightarrow A=\dfrac{2}{-9\left(x+\dfrac{1}{3}\right)^2-4}\ge\dfrac{2}{4}=\dfrac{1}{2}\forall x\)
ĐT xảy ra khi: \(-9\left(x+\dfrac{1}{3}\right)^2=0\)
\(\Leftrightarrow x=\dfrac{-1}{3}\)
Gọi A� là tử (14x2−8x+914�2−8�+9)
C� là mẫu (3x2+6x+93�2+6�+9)
Ta có:A� =14x2−8x+914�2−8�+9
⇒Amin⇒����=557557
Ta có: C�=3x2+6x+93�2+6�+9
⇒Cmin⇒����=6
Suy ra Bmin����=(557)6(557)6=55425542
Vậy GTNN của B là 5542