\(A=x^2-10x+26\) tại x=105

\(B=2\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(A=x^2-10x+25+1\)

\(=\left(x-5\right)^2+1\)

\(=100^2+1=10001\)

b: \(B=2\left(a^2+a-5a-5\right)-\left(a^2-10a+25\right)+36\)

\(=2a^2-8a-10-a^2+10a-25+36\)

\(=a^2+2a+1\)

\(=\left(a+1\right)^2=100^2=10000\)

c: \(C=a^3+3a^2+3a+1=\left(a+1\right)^3=100^3=1000000\)

d: \(E=a^3+3a^2+3a+1+5\)

\(=\left(a+1\right)^3+5\)

\(=30^3+5=27005\)

13 tháng 6 2018

a) a3 + 1 + 3a + 3a2 = ( a + 1)3 = 102 = 100

b) x3 + 3x2 + 3x + 1 = ( x + 1)3 = 203 = 8000 ( sửa đề)

c) a3 + 3a2 + 3a + 6 = a3 + 3a2 + 3a + 1 + 5 = ( a + 1)3 + 5 = 27005

d) a3 - 3a2 + 3a - 1 = ( a - 1)3 = 1003 = 1000000 ( sửa đề )

13 tháng 6 2018

sua de(ghi ra ok)

nhung de sai dau lai di sua

a: \(=3x+5-3x+\dfrac{5}{3}-3x-1=3x+\dfrac{17}{3}\)

b: \(=\left(3a+2-3a+2\right)^2=4^2=16\)

19 tháng 6 2019

a) \(15x^3y^2+10x^2y^2-2x^3y^3\)

\(=x^2y^2\left(15x+10-xy\right)\)

b) \(-4x^3y-6x^2y^2-8x^4y^3\)

\(=-2x^2y\left(2x+3y+4x^2y^2\right)\)

c) \(3a\left(a+b\right)+2\left(a+b\right)^2\)

\(=\left(a+b\right)\left(3a+2a+2b\right)\)

\(=\left(a+b\right)\left(5a+2b\right)\)

d) \(16x^2-9\left(x+y\right)^2\)

\(=\left(4x-3x-3y\right)\left(4x+3x+3y\right)\)

\(=\left(x-3y\right)\left(7x+3y\right)\)

e) \(-a^2-2a-41\)

Sai đề

f) \(5\left(x-1\right)^3-10\left(1-x\right)^2\)

\(=5\left(x-1\right)^3+10\left(x-1\right)^3\)

\(=15\left(x-1\right)^3\)

20 tháng 6 2019

cảm ơn bạn ạ

3 tháng 7 2018

a)   \(x^2+2x+1=\left(x+1\right)^2\)

b)   \(9x^2+y^2+6xy=\left(3x+y\right)^2\)

c)   \(25a^2+4b^2-20ab=\left(5a-2b\right)^2\)

d)   \(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)

e)   \(\left(2x+3y\right)^3+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)

f) mk chỉnh lại đề nha:

 \(2xy^2+x^2y^4+1=\left(xy^2+1\right)^2\)

g)  \(x^2+6xy+9y^2=\left(x+3y\right)^2\)

h)  \(x^2-10xy+25y^2=\left(x-5y\right)^2\)

3 tháng 7 2018

cảm ơn bn nha!

19 tháng 11 2018

a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)

\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)

19 tháng 11 2018

c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)

Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)

\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)

1. \(4x^2-17xy+13y^2=4x^2-4xy-13xy+13y^2=4x\left(x-y\right)-13y\left(x-y\right)=\left(x-y\right)\left(4x-13y\right)\)

2. \(2x\left(x-5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)

3. \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)

\(\Leftrightarrow\left(2a-3b\right)^2-2\left(2a-3b\right)\left(2b-3a\right)+\left(2b-3a\right)^2=\left(2a-3b-2b+3a\right)^2=\left(5a-5b\right)^2\)

\(=25\left(a-b\right)^2=25\cdot100=2500\)

13 tháng 8 2018

1) \(\left(a+b\right)^3=\left(a+b\right)\left(a+b\right)^2=\left(a+b\right)\left(a^2+2ab+b^2\right)\)

\(=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3\)

\(=a^3+3a^2b+3ab^2+b^3\)

2) \(\left(a-b\right)^3=\left(a-b\right)\left(a-b\right)^2=\left(a-b\right)\left(a^2-2ab+b^2\right)\)\(=a^3-2a^2b+ab^2-a^2b+2ab^2-b^3\)

\(=a^3-3a^2b+3ab^2-b^3\)