\(\left|x-500\right|\)+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

Ta có: \(\left\{{}\begin{matrix}\left|x-500\right|=\left|500-x\right|\ge500-x\\\left|x-300\right|\ge x-300\end{matrix}\right.\)

\(\Rightarrow\left|x-500\right|+\left|x-300\right|\ge\left(500-x\right)+\left(x-300\right)\)

\(\Rightarrow A\ge500-x+x-300=500-300\)

\(\Rightarrow A\ge200\)

Đẳng thức xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}\left|500-x\right|=500-x\\\left|x-300\right|=x-300\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}500-x\ge0\\x-300\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le500\\x\ge300\end{matrix}\right.\)

\(\Leftrightarrow300\le x\le500\)

Vậy Min A = 200 \(\Leftrightarrow300\le x\le500\)

27 tháng 9 2017

Ta có: A = | x - 500 | + | x - 300 |

A = | x - 500 | + | 300 - x |

Áp dụng: | x | + | y | \(\ge\) | x + y |

\(\Rightarrow A\ge\) | x - 500 + 300 - x | = | -200 | = 200

Vậy giá trị của A là 500

A đạt được GTNN \(\Leftrightarrow\) ( x - 500 ) ( 300 - x ) \(\ge\) 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-500\ge0\\300-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-500< 0\\300-x< 0\end{matrix}\right.\\\\\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge500\\x\le300\end{matrix}\right.\\\left\{{}\begin{matrix}x>500\\x>300\end{matrix}\right.\\\\\end{matrix}\right.\)

\(\Rightarrow\) x = 500

Vậy ..........

Chúc bạn hok tốt!!!Nguyen Thi Tra My

1 tháng 8 2019

Tìm GTNN

Ta có: A = |x - 1| + |x - 4|

=>  A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3

=> A \(\ge\)3

Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0

<=> \(1\le x\le4\)

Vậy Min A = 3 <=> \(1\le x\le4\)

Tìm GTLN

Ta có: -|x + 2| \(\le\)\(\forall\)x

hay A  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max A = 0 <=> x = -2

23 tháng 10 2018

a) (1/3)^500=(1/3)^5*100=(1/3*5)^100=(5/3)^100

(1/5)^300=(1/5)^3*100=(1/5*3)^100=(3/5)^100

Vì 5/3 >3/5

=>(5/3)^100 > (3/5)^100

Vậy (1/3)^500>(1/5)^300

Dấu "^" là dấu lũy thừa nha bạn

23 tháng 10 2018

hộ mik câu b nha

11 tháng 3 2020

/X-2/+/5-X/ lớn hơn hoặc bằng /X-2+5-X/=3

(với mọi X)

=> biểu thức trên lớn hơn hoặc bằng 3

=> biểu thức trên nhỏ nhất bằng 3 khi (X-2) và (5-X) cùng dấu

hay (X-2)(5-X) lớn hơn hoặc bằng 0

=>biểu thức trên nhỏ nhất bằng 3 khi 2 bé hơn hoặc bằng x bé hơn hoặc bằng 5

CHÚC BẠN HỌC TỐT

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

15 tháng 6 2016

a,Ta có:

\(\left|4x-\frac{7}{3}\right|\ge0\Rightarrow\left|4x-\frac{7}{3}\right|+2004\ge2004\)

Dấu "=" xảy ra \(\Leftrightarrow\left|4x-\frac{7}{3}\right|=0\Leftrightarrow4x-\frac{7}{3}=0\Leftrightarrow4x=\frac{7}{3}\Leftrightarrow x=\frac{7}{12}\)

b,Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|+\left|4-x\right|\ge x-1+x-2+3-x+4-x=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\begin{cases}x-1\ge0\\x-2\ge0\\3-x\ge0\\4-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge2\\x\le3\\x\le4\end{cases}\)\(\Leftrightarrow2\le x\le3\)

15 tháng 6 2016

Câu C sai đề

A=\(\left|4x-\frac{7}{3}\right|+2004\ge2004\)

Dấu "=" xảy ra khi: x=7/12

Vậy GTNN của A là 2004 tại x=7/12

30 tháng 6 2018

a) Ta có: \(\left|x\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow A=\left|x\right|+\frac{6}{13}\ge\frac{6}{13}\)

Dấu "=" xảy ra "=" |x| = 0 <=> x = 0

Vậy Amin = 6/13 khi và chỉ khi x = 0

b) Ta có: \(\left|x+2,8\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow B=\left|x+2,8\right|-7,9=\left|x+2,8\right|+\left(-7,9\right)\ge-7,9\)

Dấu "=" xảy ra <=> |x+2,8| = 0 <=> x + 2,8 = 0 <=> x = -2,8

Vậy Bmin = -7,9 khi và chỉ khi x = -2,8

c) Ta có: \(\left|x+1,5\right|\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow C=\left|x+1,5\right|-5,7=\left|x+1,5\right|+\left(-5,7\right)\ge-5,7\)

Dấu "=" xảy ra <=> |x+1,5| = 0 <=> x + 1,5 = 0 <=> x = -1,5

Vậy Cmin = -5,7 khi và chỉ khi x = -1,5

20 tháng 11 2016

A = |x - 5| + |x - 7|

A = |x - 5| + |7 - x|

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)

Dấu "=" xảy ra khi \(\begin{cases}x-5\ge0\\7-x\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge5\\x\le7\end{cases}\)\(\Rightarrow5\le x\le7\)

Vậy GTNN của A là 2 khi \(5\le x\le7\)

12 tháng 12 2017

1/ \(A=3\left|2x-1\right|-5\)

Ta có: \(\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|\ge0\)

\(\Rightarrow3\left|2x-1\right|-5\ge-5\)

Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất

Vậy \(Min_A=-5\)