K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2023

Thay \(x=1;y=-1;z=2\) vào P

\(P=1.\left(-1\right)^2.2-2.1^2.\left(-1\right).2^2+3.\left(-1\right).2+1\\ =5\)

2 tháng 12 2018

\(x+y+z=0\Rightarrow x+y=-z\)

\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\Rightarrow x^2+2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=-2xy\)

Tương tự: \(y^2+z^2-x^2=-2yz,x^2+z^2-y^2=-2xz\)

\(\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+y^2-z^2}+\frac{1}{x^2+z^2-y^2}\)

\(=\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{x+y+z}{-2xyz}=0\)

7 tháng 11 2018

thay z = -(x+y) , y = -(z+x),... vao

=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0

22 tháng 7 2023

Thay \(x=-3,y=-\dfrac{1}{2},z=3\) vào P ta có:

\(P=3\cdot\left(-3\right)\cdot\left(-\dfrac{1}{2}\right)^2-6\cdot\left(-3\right)\cdot\left(-\dfrac{1}{2}\right)+8\cdot\left(-3\right)\cdot3+\left(-3\right)\cdot\left(-\dfrac{1}{2}\right)^2-10\cdot\left(-3\right)\cdot3=6\)

Vậy:...

`P = (3+1)xy^2 - 6xy +(8-10)xz`

`= 4xy^2 - 6xy - 2xz`

Khi `x = -3; y = -1/2; z = 3` thì GTBT là:

`4 . (-3) . (-1/2)^2 - 6 .(-3) . (-1/2) + 2 . (-3) . 3`

`= -3 - 9 - 18`

`= -30`.

25 tháng 12 2016

\(\orbr{\begin{cases}y=\frac{3}{x}\\z=\frac{4}{x}\end{cases}\Rightarrow\frac{12}{x^2}=6\Rightarrow x^2=2}\)

\(\orbr{\begin{cases}x=\frac{3}{y}\\z=\frac{6}{y}\end{cases}\Rightarrow\frac{18}{y^2}=4\Rightarrow y^2=\frac{9}{2}}\)

\(\orbr{\begin{cases}x=\frac{4}{z}\\y=\frac{6}{z}\end{cases}\Rightarrow\frac{24}{z^2}=3\Rightarrow z^2=8}\)

\(A=\frac{1}{2}\left(2+\frac{9}{2}+8\right)=\frac{4+9+16}{4}=\frac{29}{4}\) 

8 tháng 4 2016

\(a.\)

Phân tích biển đổi thành nhân tử kết hợp với chuyển vế để quy về hẳng đẳng thức, khi đó, ta tính được  \(a,b\)

Thật vậy, ta có:

\(a^2-2a+6b+b^2=-10\)

\(\Leftrightarrow\)  \(a^2-2a+6b+b^2+10=0\)

\(\Leftrightarrow\)  \(\left(a^2-2a+1\right)+\left(b^2+6b+9\right)=0\)

\(\Leftrightarrow\)  \(\left(a-1\right)^2+\left(b+3\right)^2=0\)   \(\left(1\right)\)

Vì  \(\left(a-1\right)^2\ge0;\)  \(\left(b+3\right)^2\ge0\)  với mọi  \(a,b\)

nên để thỏa mãn đẳng thức \(\left(1\right)\)  thì phải xảy ra đồng thời  \(\left(a-1\right)^2=0\)  và  \(\left(b+3\right)^2=0\)

\(\Leftrightarrow\)  \(a-1=0\)  và  \(b+3=0\)  \(\Leftrightarrow\)  \(a=1\)  và  \(b=-3\)

\(b.\)  Cộng  \(1\) vào mỗi phân thức của biểu thức  \(A\), khi đó, ta có:

\(A+3=\left(\frac{x+y}{z}+1\right)+\left(\frac{x+z}{y}+1\right)+\left(\frac{y+z}{x}+1\right)=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}\)

\(A+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=0\)  (do  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\))

Vậy,  \(A=-3\)

9 tháng 4 2016

Viết rõ hơn được không bạn

31 tháng 10 2015

BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4

MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2

    =>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2

   =>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2

   b,A=y(y+1)(y+2)(y+3)

=>A =[y(y+3)] [(y+1)(y+2)]

  =>A=(y2+3y) (y2+3y+2)

Đặt X=y2+3y+1

=>A=(X+1)(X-1)

=>A=X2-1

=>A=(y2+3y+1)2-1

MÀ (y2+3y+1)2>=0 với mọi giá trị của y

=>(y2+3y+1)2-1>=-1

Vậy GTNN của Alà -1

c,B=x3+y3+z3-3xyz

=>B=(x3+y3)+z3-3xyz

=>B=(x+y)3-3xy(x+y)+z3-3xyz

=>B=[(x+y)3+z3]-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)