Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2a+2b+2c=by+cz+ax+cz+ax+by\)
\(\Leftrightarrow a+b+c=ax+by+cz\)
\(\Rightarrow a+b+c=ax+2a;a+b+c=by+2b;a+b+c=cz+2c\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{a}{a+b+c};\frac{1}{y+2}=\frac{b}{a+b+c};\frac{1}{z+2}=\frac{c}{a+b+c}\)
\(\Rightarrow A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
Ta có:\(\hept{\begin{cases}2a=by+cz\\2b=ax+cz\\2c=ax+by\end{cases}}\)
\(\Leftrightarrow2a+2b+2c=by+cz+ax+cz+ax+by\)
\(\Leftrightarrow2a+2b+2c=2ax+2by+2cz\)
\(\Leftrightarrow2a+2b+2c-2ax-2by-2cz=0\)
\(\Leftrightarrow\left(2a-2ax\right)+\left(2b-2by\right)+\left(2c-2cz\right)=0\)
\(\Leftrightarrow2a\left(1-x\right)+2b\left(1-y\right)+2c\left(1-z\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}1-x=0\\1-y=0\\1-z=0\end{cases}\Leftrightarrow x=y=z=1}\)
\(\Rightarrow A=\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{1+2}+\frac{1}{1+2}+\frac{1}{1+2}=1\)
Ta có : \(\begin{cases}x=by+cz\\y=ax+cz\\z=ax+by\end{cases}\) . Cộng các đẳng thức trên theo vế :
\(x+y+z=2\left(ax+by+cz\right)\Rightarrow\frac{x+y+z}{ax+by+cz}=2\)
Lại có : \(y=ax+cz\Rightarrow a=\frac{y-cz}{x}\Rightarrow a+1=\frac{x+y-cz}{x}\Rightarrow\frac{1}{a+1}=\frac{x}{x+y-cz}=\frac{x}{ax+by+cz}\)
Tương tự : \(\frac{1}{b+1}=\frac{y}{ax+by+cz};\frac{1}{c+1}=\frac{z}{ax+by+cz}\)
\(\Rightarrow P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x}{ax+by+cz}+\frac{y}{ax+by+cz}+\frac{z}{ax+by+cz}\)
\(=\frac{x+y+z}{ax+by+cz}=2\)
Ta có : \(\begin{cases}x=by+cz\\y=ax+cz\\z=ax+by\end{cases}\) . Cộng các đẳng thức trên theo vế :
\(x+y+z=2\left(ax+by+cz\right)\)\(\Rightarrow\frac{x+y+z}{ax+by+cz}=2\)
Ta có : \(y=ax+cz\Rightarrow a=\frac{y-cz}{x}\Rightarrow a+1=\frac{x+y-cz}{x}\Rightarrow\frac{1}{a+1}=\frac{x}{x+y-cz}\)
\(\Rightarrow\frac{1}{a+1}=\frac{x}{ax+by+cz}\)
\(\Rightarrow P=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{x+y+z}{ax+by+cz}=2\)
Tương tự : \(\frac{1}{b+1}=\frac{y}{ax+by+cz}\) ; \(\frac{1}{c+1}=\frac{z}{ax+by+cz}\)
\(2a+2b+2c=2ax+2by+2cz\Rightarrow a+b+c=ax+by+cz\)
\(\Rightarrow a+b+c=ax+2a\Rightarrow a+b+c=a\left(x+2\right)\)
Tương tự ta có \(\left\{{}\begin{matrix}a+b+c=b\left(y+2\right)\\a+b+c=c\left(z+2\right)\end{matrix}\right.\)
Để M xác định thì \(x+2;y+2;z+2\ne0\)
Do đó nếu \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\) \(\Rightarrow\) đúng với mọi x, y, z
\(\Rightarrow\) giá trị M không xác định
Nếu \(a+b+c\ne0\Rightarrow\left\{{}\begin{matrix}x+2=\dfrac{a+b+c}{a}\\y+2=\dfrac{a+b+c}{b}\\z+2=\dfrac{a+b+c}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+2}=\dfrac{a}{a+b+c}\\\dfrac{1}{y+2}=\dfrac{b}{a+b+c}\\\dfrac{1}{z+2}=\dfrac{c}{a+b+c}\end{matrix}\right.\)
\(\Rightarrow M=\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=\dfrac{a+b+c}{a+b+c}=1\)
Dòng 5 gõ nhầm \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a=0\\b=0\\c=0\end{matrix}\right.\) mới đúng
Bạn tham khảo lời giải chi tiết ở đường link dưới nhé
Câu hỏi của nguyễn thế an - Toán lớp 8 - Học toán với OnlineMath