Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{6}{4+\sqrt{4-2\sqrt{3}}}=\frac{6}{4+\sqrt{\sqrt{3}^2-2\sqrt{3}+\sqrt{1}^2}}\)
\(=\frac{6}{4+\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}}=\frac{6}{4+|\sqrt{3}-1|}=\frac{6}{3+\sqrt{3}}\)
\(=\frac{6}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{36}}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{3}.\sqrt{12}}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{12}}{\sqrt{3}+1}\)
\(d,\frac{1}{\sqrt{7-2\sqrt{10}}}+\frac{1}{\sqrt{7+2\sqrt{10}}}\)
\(=\frac{1}{\sqrt{\sqrt{5}^2-2.\sqrt{2}.\sqrt{5}+\sqrt{2}^2}}+\frac{1}{\sqrt{\sqrt{5}^2+2.\sqrt{2}.\sqrt{5}+\sqrt{2}^2}}\)
\(=\frac{1}{\sqrt{\left(\sqrt{5}-\sqrt{2}\right)}}+\frac{1}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\frac{1}{\sqrt{5}-\sqrt{2}}+\frac{1}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{2\sqrt{5}}{\sqrt{5}^2-\sqrt{2}^2}=\frac{\sqrt{5.4}}{5-2}=\frac{\sqrt{20}}{3}\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
A = \(\frac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\frac{\sqrt{5}-1}{2}=\frac{\sqrt{3+\sqrt{5}}.\sqrt{2}}{2}-\frac{\sqrt{5}-1}{2}\)
= \(\frac{\sqrt{5}+1}{2}-\frac{\sqrt{5}-1}{2}=1\)
\(B=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)
\(B=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}=-1+\sqrt{100}=10-1=9\)