Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(sin220°+sin270°)+(sin230°+sin260°)
+(sin240°+sin250°)-tan245°
=(sin220°+cos220°)+(sin230°+cos230°)+(sin240°+cos240°)-1
=1+1+1-1=2
\(B=tan^210.tan^280.tan^220.tan^270.tan^230.tan^260.tan^240.tan^250\)
\(=\left(tan10.cot10\right)^2.\left(tan20.cot20\right)^2...\left(tan40.cot40\right)^2\)
\(=1.1.1....1=1\)
\(C=\frac{tan^210}{tan^2\left(90-80\right)}+\frac{tan^220}{tan^2\left(90-70\right)}+...+\frac{tan^240}{tan^2\left(90-50\right)}+tan^245\)
\(=\frac{tan^210}{tan^210}+\frac{tan^220}{tan^220}+\frac{tan^230}{tan^230}+\frac{tan^240}{tan^240}+1\)
\(=1+1+1+1+1=5\)
\(A=sin^210^o+sin^220^o+sin^230^o+sin^240^o+sin^250^o+sin^260^o+sin^270^o+sin^280^o\)
\(A=\left(sin^210^o+sin^280^o\right)+\left(sin^220^o+sin^270^o\right)+\left(sin^230^o+sin^260^o\right)+\left(sin^240^o+sin^250^o\right)\)
\(A=\left(sin^210^o+cos^210^o\right)+\left(sin^220^o+cos^220^o\right)+\left(sin^230^o+cos^230^o\right)+\left(sin^240^o+cos^240^o\right)\)
\(A=1+1+1+1\)
\(A=4\)
A = ( sin2 10o + sin2 80o) + (sin2 20o + sin2 70o) + ...+ (sin240o + sin2 50o)
A = ( sin2 10o + cos2 10o) + (sin2 20o + cos2 20o) + ...+ (sin240o + cos2 40o)
A = 1 + 1 + 1 + 1 = 4 ( Vì ( sin2 a + cos2 a = 1 với mọi a)
Bài làm
A = ( sin2 10o + sin2 80o) + (sin2 20o + sin2 70o) + ...+ (sin240o + sin2 50o)
A = ( sin2 10o + cos2 10o) + (sin2 20o + cos2 20o) + ...+ (sin240o + cos2 40o)
A = 1 + 1 + 1 + 1 = 4
hok tốt
- Nhập \(sin^2\left(20^o\right)+sin^2\left(30^o\right)+sin^2\left(40^o\right)+sin^2\left(50^o\right)+sin^2\left(60^o\right)+sin^2\left(70^o\right)\)
vào màn hình bấm \(=3\)
- Nhập \(sin^2\left(36^o\right)+sin^2\left(54^o\right)-2tan\left(25^o\right).tan\left(65^0\right)\)vào màn hình bấm \(=-0,6031977533\)
Ta có: \(\tan^280^o=\tan80^o.\tan80^o=\cot10^o.\cot10^o=\cot^210^o\)
Tương tự: \(\tan^270^o=\cot^220^o\); \(\tan^260^o=\cot^230^o\); \(\tan^250^o=\cot^240^o\)
Thay vào B ta được:
\(B=\tan^210^o.\tan^220^o.\tan^230^o.\tan^240^o.\cot^210^o.\cot^220^o.\cot^230^o.\cot^240^o\)
\(=1^2.1^2.1^2.1^2=1.1.1.1=1\)