Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x3 + 3x2 + 3x - 899
= (x3 + 3x2 + 3x + 1) - 900
= (x + 1)3 - 900
= (29 + 1)3 - 900 = 303 - 900 = 26100
B = x3 - 6x2 + 12x + 10
= (x3 - 6x2 + 12x - 8) + 18
= (x - 2)3 + 18
= (12 - 2)3 + 18 = 103 + 18 = 1000 + 18 = 1018
c) C = 8x3 - 27y3
= (2x)3 - (3y)3
= (2x - 3y)(4x2 + 6xy + 9y2)
= (2x - 3y)(4x2 - 12xy + 9y2) + (2x - 3y).18xy
= (2x - 3y)(2x - 3y)2 + (2x - 3y).18xy
= (2x - 3y)3 + (2x - 3y).18xy
= 53 + 5.18.4
= 125 - 360
= -235
D = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y)
= (x + y)(x2 - xy + y2) + 3x3y + 3xy3 + 6x2y2
= x2 + y2 - xy + 3x3y + 3xy3 + 6x2y2
= (x + y)2 - 3xy + 3x3y + 3xy3 + 6x2y2
= 1 - 3xy(2xy - 1) + 3xy(x2 + y2)
= 1 - 3xy(x2 + y2 + 2xy - 1)
= 1 - 3xy[(x + y)2 - 1]
= 1 - 0 = 1
2.
a) . -x3 + 3x2 - 3x + 1
=13-3.12x+3.1.x2-x3
=(1-x)3
b)8- 12x + 6x2 - x3
=23-3.22.x+3.2.x2-x3
=(2-x)3
3.
a) x3 + 12x2 + 48x + 64 tại x = 6
=x3+3.x2.4+3x4+432
=(x+4)3thay x=6 ta được :
(6+4)3=103=1000
b) x3 - 6x2 + 12x - 8 tại x= 22
=x3-3.x2.2+3.x.22 -23
=(x-2)3 thay x=22 ta đc:
=(22-2)3=203=8000
a) 49x2 - 70x + 25 = (7x)2 - 2.7.5x + 52 = (7x - 5)2 = (7.5 - 5)2 = 302 = 900
b) x3 + 12x2 + 48x + 64 = (x + 4)3 = (6 + 4)3 = 103 = 1000
c) 4x2 + 4xy + y2 = (2x + y)2 = (-6.2 + 2)2 = (-10)2 = 100
d) x3 - 6x2 + 12x - 8 = (x - 2)3 = (102 - 2)3 = 1003 = 1000000
a)P=5x(x2-3)+x2(7-5x)-7x2
=5x3-15x+7x2-5x3-7x2
=15x
thay x=5 vào P=15x ta được
15.5=75
b)Q=x(x-y)+y(x-y)
=x2-xy+xy-y2
=x2-y2
Thay x=1,5 ; y=10 vào Q=x2-y2 ta được :
1,52-102=\(\frac{-391}{4}\)
a, \(x^2+4y^2-4xy=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Thay \(x=18;y=4\) ta được:
\(\left(x-2y\right)^4=\left(18-2.4\right)^2=\left(18-8\right)^2=10^2=100\)
b, \(8x^3-12x^2y+6xy^2-y^3=\left(2x-y\right)^3\)
Thay \(x=6;y=-8\) ta được:
\(\left(2x-y\right)^3=\left(2.6+8\right)^3=\left(12+8\right)^3=20^3=8000\)
c, \(\left(a+b\right)^3+\left(a-b\right)^3-6ab^2\)
\(=a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-6ab^2\)
\(=2a^3\)
Thay \(a=1;b=2008\) ta được:
\(2a^3=2.1^3=2\)
2a) \(4x^2-1=\left(2x\right)^2-1^2=\left(2x+1\right)\left(2x-1\right)\)
b) \(x^2+16x+64=\left(x+8\right)^2\)
c) \(x^3-8y^3=x^3-\left(2y\right)^3\)
\(=\left(x-2y\right)\left(x^2+2xy+4y^2\right)\)
d) \(9x^2-12xy+4y^2=\left(3x-2y\right)^2\)
a: \(=\left(x-y\right)\left(x+y\right)\)
\(=74\cdot100=7400\)
c: \(=\left(x+2\right)^3\)
\(=10^3=1000\)
a) \(=\left(x-y\right)\left(x+y\right)\)
Thay \(x=87;y=13\) ta đc: \(\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)
b)\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)
Thay \(x=10;y=-1\) ta đc:
\(10^3-\left(-1\right)^3=1000-1=999\)
c)\(=\left(x+2\right)^3\)
Thay \(x=8\) ta đc: \(\left(8+2\right)^3=10^3=1000\)
d)\(=x^2-8x+16+1=\left(x-4\right)^2+1\)
Thay \(x=104\) ta đc: \(\left(104-4\right)^2+1=100^2+1=10001\)