K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

\(A=\log_3\left(\log_{2\sqrt{2}}\sqrt[3]{\sqrt{2}}\right)=\log_3\left(\log_{2^{\frac{3}{2}}}2^{\frac{1}{6}}\right)=\log_3\left(\frac{1}{6}.\frac{2}{3}\right)=\log_33^{-2}=-2\)

4 tháng 5 2016

\(E=16\left[\log_{3^{-2}}3^{\frac{3}{2}}\right]^2+23\log_{2^{\frac{9}{2}}}2^{\frac{5}{2}}-12\log_55^{-3}=16\left(-\frac{3}{4}\right)^2+9\frac{5}{9}-12\left(-3\right)=50\)

26 tháng 3 2016

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)

11 tháng 5 2016

\(F=\log_{3-2\sqrt{2}}\left(27^{\log_92}+2^{\log_827}\right)=\log_{3-2\sqrt{2}}\left[\left(3^3\right)^{^{\log_92^2}}+2^{\log_{2^3}3^3}\right]\)

   \(=\log_{3-2\sqrt{2}}\left(3^{\frac{3}{2}\log_32}+2^{\log_23}\right)\)

   \(=\log_{3-2\sqrt{2}}\left(3^{\log_32^{\frac{3}{2}}}+2^{\log_23}\right)\)

   \(=\log_{3-2\sqrt{2}}\left(2^{\frac{3}{2}}+3\right)=\log_{\left(3-2\sqrt{2}\right)^{-1}}\left(3-2\sqrt{2}\right)=-1\)

18 tháng 4 2016

Điều kiện \(\begin{cases}x\ne1\\x>\frac{1}{2}\end{cases}\)

\(\log_3\left(x-1\right)^2+\log_{\sqrt{3}}\left(2x-1\right)=2\Leftrightarrow2\log_3\left|x-1\right|+2\log_3\left(2x-1\right)=2\)

                                                      \(\Leftrightarrow\log_3\left|x-1\right|\left(2x-1\right)=\log_33\)

                                                       \(\Leftrightarrow\left|x-1\right|\left(2x-1\right)=3\)

                                                       \(\frac{1}{2}\)<x<1 và \(2x^2-3x+4=0\)

                                                hoặc x>1 và \(2x^2-3x-2=0\)

\(\Leftrightarrow x=2\) thỏa mãn điều kiện. Vậy x=2

14 tháng 5 2016

a. \(y=\left(3^x-9\right)^{-2}\)

Điều kiện : \(3^x-9\ne0\Leftrightarrow3^x\ne3^2\)

                                  \(\Leftrightarrow x\ne2\)

Vậy tập xác định là \(D=R\backslash\left\{2\right\}\)

 

b. \(y=\sqrt{\log_{\frac{1}{3}}\left(x-3\right)-1}\)

Điều kiện : \(\log_{\frac{1}{3}}\left(x-3\right)-1\ge0\Leftrightarrow\log_{\frac{1}{3}}\left(x-3\right)\ge1=\log_{\frac{1}{3}}\frac{1}{3}\)

                                               \(\Leftrightarrow0< x-3\le\frac{1}{3}\)

                                               \(\Leftrightarrow3< x\le\frac{10}{3}\)

Vậy tập xác định \(D=\) (3;\(\frac{10}{3}\)]

 

c. \(y=\sqrt{\log_3\sqrt{x^2-3x+2}+4-x}\)

Điều kiện :

                 \(\log_3\sqrt{x^2-3x+2}+4-x\ge0\Leftrightarrow x^2-3x+2+4-x\ge1\)

                                                                 \(\Leftrightarrow\sqrt{x^2-3x+2}\ge-x-3\)

\(\Leftrightarrow\begin{cases}x-3< 0\\x^2-3x+2\ge0\end{cases}\) hoặc \(\begin{cases}x-3\ge0\\x^2-3x+2\ge\left(x-3\right)^2\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\2\le x< 3\\x\ge3\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}x\le1\\x\ge2\end{array}\right.\)

Vậy tập xác định là : D=(\(-\infty;1\)]\(\cup\) [2;\(+\infty\) )

26 tháng 3 2016

a) \(A=\log_{5^{-2}}5^{\frac{5}{4}}=-\frac{1}{2}.\frac{5}{4}.\log_55=-\frac{5}{8}\)

b) \(B=9^{\frac{1}{2}\log_22-2\log_{27}3}=3^{\log_32-\frac{3}{4}\log_33}=\frac{2}{3^{\frac{3}{4}}}=\frac{2}{3\sqrt[3]{3}}\)

c) \(C=\log_3\log_29=\log_3\log_22^3=\log_33=1\)

d) Ta có \(D=\log_{\frac{1}{3}}6^2-\log_{\frac{1}{3}}400^{\frac{1}{2}}+\log_{\frac{1}{3}}\left(\sqrt[3]{45}\right)\)

                   \(=\log_{\frac{1}{3}}36-\log_{\frac{1}{3}}20+\log_{\frac{1}{3}}45\)

                   \(=\log_{\frac{1}{3}}\frac{36.45}{20}=\log_{3^{-1}}81=-\log_33^4=-4\)

NV
16 tháng 11 2018

Câu a đúng là cú lừa, biến đổi logarit thì dễ, đến lúc nó ra pt vô tỉ theo x mới thấy vấn đề :D

a/ĐK: \(0< x< 1\)

\(2log_2x-log_2\left(1-\sqrt{x}\right)=log_2\left(x-2\sqrt{x}+2\right)\)

\(\Leftrightarrow log_2x^2-log_2\left(1-\sqrt{x}\right)=log_2\left(x-2\sqrt{x}+2\right)\)

\(\Leftrightarrow log_2\left(\dfrac{x^2}{1-\sqrt{x}}\right)=log_2\left(x-2\sqrt{x}+2\right)\)

\(\Leftrightarrow\dfrac{x^2}{1-\sqrt{x}}=x-2\sqrt{x}+2=x+2\left(1-\sqrt{x}\right)\)

Đặt \(1-\sqrt{x}=t\) (\(0< t< 1\)) \(\Rightarrow\dfrac{x^2}{t}=x+2t\)

\(\Leftrightarrow x^2-t.x-2t^2=0\) \(\Rightarrow\Delta=t^2+8t^2=9t^2\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{t+3t}{2}=2t\\x=\dfrac{t-3t}{2}=-t< 0\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=2\left(1-\sqrt{x}\right)\Rightarrow x+2\sqrt{x}-2=0\) \(\Rightarrow x=4-2\sqrt{3}\)

b/ĐK \(x>0\)

\(log_3\left(x-1\right)^2-log_3x+\left(x-1\right)^2=x\)

\(\Leftrightarrow log_3\left(x-1\right)^2+\left(x-1\right)^2=log_3x+x\)

Xét hàm \(f\left(t\right)=log_3t+t\) \(\left(t>0\right)\Rightarrow f'\left(t\right)=\dfrac{1}{t.ln3}+1>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)

\(\Rightarrow log_3\left(x-1\right)^2+\left(x-1\right)^2=log_3x+x\Leftrightarrow\left(x-1\right)^2=x\)

\(\Leftrightarrow x^2-3x+1=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{5}}{2}\\x=\dfrac{3-\sqrt{5}}{2}\end{matrix}\right.\)

17 tháng 11 2018

Cảm ơn nhiều ạ.

14 tháng 5 2016

Ta có :

\(\log_62-\frac{1}{2}\log_{\sqrt{6}}5=\log_62-\log_65=\log_6\frac{2}{5}\)

\(\Rightarrow\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}=\left(\frac{1}{6}\right)^{\log_6\frac{2}{5}}=\left(6^{-1}\right)^{\log_6\frac{2}{5}}=6^{\log_6\frac{2}{5}}=\frac{5}{2}=\sqrt[3]{\left(\frac{5}{2}\right)^3}=\sqrt[3]{\frac{125}{8}}\)

Mà :

\(\sqrt[3]{\frac{125}{8}}>\sqrt[3]{\frac{124}{8}}\Rightarrow\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}>\sqrt[3]{\frac{31}{2}}\)

\(\Rightarrow B=\left(\frac{1}{6}\right)^{\log_62-\frac{1}{2}\log_{\sqrt{6}}5}-\sqrt[3]{\frac{31}{2}}>0^{ }\)