Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(a+b\right)^2=a^2+2ab+b^2=a^2-2ab+b^2+4ab=\left(a-b\right)^2+4ab^{\left(đpcm\right)}\)
b)Từ kết quá câu a),ta suy ra: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab=9^2-4.20=81-80=1\)
\(\Rightarrow a-b=1\Rightarrow\left(a-b\right)^{2015}=1^{2015}=1\)
Vậy \(\left(a-b\right)^{2015}=1\)
Ta có:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
Ta lại có:
\(a^2+b^2+c^2\ge ab+bc+ca\)
Dấu = xảy ra khi \(a=b=c\)
Thế vào N ta được
\(N=\frac{a^{2015}+b^{2015}+c^{2015}}{\left(a+b+c\right)^{2015}}=\frac{3a^{2015}}{3^{2015}.a^{2015}}=\frac{1}{a^{2014}}\)
\(A=-2\)
\(\Leftrightarrow5x^2+y^2+4xy-6x-2y=-2\)
\(\Leftrightarrow4x^2+x^2+y^2+4xy-4x-2x-2y+1+1=0\)
\(\Leftrightarrow\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1+\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+y-1\right)^2+\left(x-1\right)^2=0\)(1)
Mà \(\left(2x+y-1\right)^2+\left(x-1\right)^2\ge0\)nên (1) xảy ra
\(\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=1\end{cases}}\)
\(\Rightarrow B=1^{2015}.\left(-1\right)^{2016}-1^{2016}.\left(-1\right)^{2017}+2014\)
\(=1+1+2014=2016\)
Ta có: A = -2
=> 5x2 + y2 + 4xy - 6x - 2y = -2
=> 5x2 + y2 + 4xy - 6x - 2y + 2 = 0
=> (4x2 + 4xy + y2) - 2(2x + y) + 1 + (x2 - 2x + 1) = 0
=> (2x + y)2 - 2(2x + y) + 1 + (x - 1)2 = 0
=> (2x + y - 1)2 + (x - 1)2 = 0
<=> \(\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}y=1-2x\\x=1\end{cases}}\)
<=> \(\hept{\begin{cases}y=1-2.1=-1\\x=1\end{cases}}\)
Với x = 1; y = -1 => B = 12015.(-1)2016 - 12016.(-1)2017 + 2014
= 1 + 1 + 2014 = 2016
a+b+c=1 <=> a+b=1-c
+) Nếu 1-c=0 => a+b=0 <=> a=-b
=> A = a2015+b2015+c2015
A = (-b)2015+b2015+c2015
A = c2015 => A = 1 (Vì 1-c=0) (1)
Ta có: a3+b3+c3=1
a3+b3=1-c3
(a+b)(a2-ab+b20=(1-c)(1+c+c2)
=> (1-c)(a2-ab+b2)=(1-c)(1+c+c2)
=> a2-ab+b2=1+c+c2
(a+b)2-3ab=(1-c)2+3c
=> -3ab=3c <=> -ab=c
Thay -ab = c vào a+b+c=1, ta có:
a+b+(-ab)=1 <=> a+b-ab-1=0 <=> a(1-b)-(1-b)=0 <=> (a-1)(1-b)=0
=> a-1=0 hoặc 1-b = 0 <=> a=1 hoặc b=1
+) Nếu a=1 => b+c=0 <=> b=-c
=> A=a2015+b2015+c2015
=> A=a2015+b2015-b2015
=> A=a2015 => A=1 (2)
+) Nếu b=1 => a+c=0 <=>a=-c
=> A=a2015+b2015+c2015
=> A=a2015+b2015+-a2015
=> A=b2015 => A=1 (3)
Từ (1)(2)(3) => A = 1
Vậy A = 1 với a+b+c=1 và a3+b3+c3=1
b) B = x2-3x+2016
B=x2-3x+2,25+2013,75
B=(x-1,5)2+2013,75
Vì (x-1,5)2 ≥ 0 => (x-1,5)2+2013,75 ≥ 2013,75
=> B ≥ 2013,75
=> GTNN của B bằng 2013,75
Dấu '=' xảy ra khi (x-1,5)2=0 <=> x-1,5=0 <=> x=1,5
Vậy GTNN của B bằng 2013,75 tại x = 1,5