K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

\(\left(x+1\right)^6+\left(y-1\right)^4=-z^2\)

\(\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

Ta có: \(\hept{\begin{cases}\left(x+1\right)^6\ge0\\\left(y-1\right)^4\ge0\\z^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^6+\left(y-1\right)^4+z^2\ge0\)

Mà \(\left(x+1\right)^6+\left(y-1\right)^4+z^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^6=0\\\left(y-1\right)^4=0\\z^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\\z=0\end{cases}}\)

Thay x = -1, y = 1, z = 0 vào P

\(\Rightarrow P=2018.\left(-1\right)^{2016}.1^{2017}-\left(0-1\right)^{2018}\)

\(=2018-1=2017\)

Vậy...

26 tháng 5 2017

(X+1)6 + (y-1)4 = - Z2 suy ra  (X+1)6= 0, (y-1)4=0, -Z2=0

X=-1, Y=1, z=0. Thay x, y, z vào biểu thức P ta được: P= 2017

4 tháng 3 2018

Ta thấy : VT >= 0

Dấu "=" xảy ra <=> 3x-5=0 ; y^2-1=0 ; x-z=0

<=> x=z=5/3 ; y=-1 hoặc x=z=5/3 ; y=1

Vậy .........

Tk mk nha

4 tháng 3 2018

\(\left(3x-5\right)^{2016}\ge0\)

\(\left(y^2-1\right)^{2018}\ge0\)

\(\left(x-z\right)^{2100}\ge0\)

suy ra \(\left(3x-5\right)^{2016}+\left(y^2-1\right)^{2018}+\left(x-z\right)^{2100}\ge0\)

Dấu bằng xảy ra khi và chỉ khi

\(\hept{\begin{cases}\left(3x-5\right)^{2016}=0\\\left(y^2-1\right)^{2018}=0\\\left(x-z\right)^{2100}=0\end{cases}}\)

\(\hept{\begin{cases}3x-5=0\\y^2-1=0\\x-z=0\end{cases}}\)

\(\hept{\begin{cases}3x=5\\y^2=1\\x=z\end{cases}}\)

\(\hept{\begin{cases}x=\frac{5}{3}\\y=\pm1\\z=\frac{5}{3}\end{cases}}\)

T I C K nha

27 tháng 11 2018

Câu hỏi của Đỗ Minh Châu - Toán lớp 7 - Học toán với OnlineMat

Em có thể tham khảo tại link này nhé!

10 tháng 10 2017

Sửa đề: 

\(\frac{x}{2016}=\frac{y}{2017}=\frac{z}{2018}=\frac{y-x}{1}=\frac{z-y}{1}=\frac{z-x}{2}\)

\(\Rightarrow x-z=2\left(x-y\right)=2\left(y-z\right)\)

\(\Rightarrow\left(x-z\right)^3=4\left(x-y\right)^2.2\left(y-z\right)=8\left(x-y\right)^2\left(y-z\right)\)

10 tháng 10 2017

cảm ơn bạn alibaba nguyễn