K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

a)=\(a^3-3a^2+3a-1+5=\left(a-1\right)^3+5\)

Thay a=11 ta có

=103+5=1005

b)\(=2\left(x+y\right)\left(x^2+y^2-xy\right)-3\left(x^2+y^2\right)=2x^2+2y^2-2xy-3x^2-3y^2\)

\(=-\left(x^2+y^2+2xy\right)=-\left(x+y^2\right)=-1\)

25 tháng 7 2018

a, Thay a = 11 vào  biểu thức A ta được:

\(A=11^3-\left(3.11\right)^2+3.11+4\)

\(A=1331-1089+33+4\)

\(A=279\)

30 tháng 6 2018

x^3+ y^3+ 3xy

=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2  -xy + y^2 + 3xy

=x^2 + 2xy + y^2

=(x+y)^2 =1

=> x^3+ y^3+ 3xy=1

1 tháng 7 2018

còn câu b ai giúp m vs

1, \(A=x^3+y^3+3xy\)

\(=x^3+3x^2y+3xy^2+y^2+3xy-3x^2y-3xy^2\)

\(=\left(x+y\right)^3+3xy-3xy\left(x+y\right)\)

Thay x +1 = 1 ta có 

\(1^3+3xy-3xy.1=1+3xy-3xy=1\)

12 tháng 7 2024

12 tháng 7 2024

b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\)

    1 = \(x^3\) - y3 - 3\(xy\)

15 tháng 8 2018

a)  \(x+y=1\)

=>   \(\left(x+y\right)^3=1\)

<=>  \(x^3+y^3+3xy\left(x+y\right)=1\)

<=>  \(x^3+y^3+3xy=1\)

b)  \(x-y=1\)

=>  \(\left(x-y\right)^3=1\)

<=>  \(x^3-y^3-3xy\left(x-y\right)=1\)

<=>  \(x^3-y^3-3xy=1\)

23 tháng 7 2018

2) b)

Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\) 

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)

\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)

\(ab+bc+ac=-60:2=-30\)

23 tháng 7 2018

a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)

                           = (x+y)^3

                           = 1^3 =1

b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac

    9^2 = 141 +2(ab+bc+ac)

    -60 = 2(ab+bc+ac)

    ab+ac+bc=-30

Vậy M=-30

c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)

       = x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3

       = x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3

       = 0

Vậy N=0 .Chúc bạn học tốt.