\(A=\left(3x^3+8x^2+2\right)^{2005}\) biết
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 6 2019

\(x=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\sqrt[3]{17\sqrt{5}-38}\left(\sqrt{5}+2\right)}{3}=\frac{\sqrt[3]{17\sqrt{5}-38}.\sqrt[3]{\left(\sqrt{5}+2\right)^3}}{3}\)

\(=\frac{\sqrt[3]{\left(17\sqrt{5}-38\right)\left(17\sqrt{5}+38\right)}}{3}=\frac{1}{3}\)

\(\Rightarrow A=\left[3.\left(\frac{1}{3}\right)^3+8.\left(\frac{1}{3}\right)^2+2\right]^{2005}=3^{2005}\)

26 tháng 11 2019

Ta có

\(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}-\sqrt{14-6\sqrt{5}}}\)

\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3\cdot5\cdot2+3\sqrt{5}\cdot4-8}}{\sqrt{5}-\sqrt{\left(3-\sqrt{5}\right)^2}}\)

\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}\)

\(=\frac{\sqrt{5}^2-2^2}{3}=\frac{1}{3}\)

Với \(x=\frac{1}{3}\)thay vào bt ta có

\(A=\left[3\cdot\left(\frac{1}{3}\right)^3+8\cdot\left(\frac{1}{3}\right)^2+2\right]^{2011}\)

\(=3^{2011}\)

10 tháng 3 2019

\(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+3.\sqrt{5}.4-8}}{\sqrt{5}+\sqrt{9-6\sqrt{5}+5}}\)

\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}\right)^3-3.\left(\sqrt{5}\right)^2.2+3.\sqrt{5}.2^2-2^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)

\(=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+3-\sqrt{5}}=\frac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{3}\)

\(=\frac{1}{3}\) Chắc được rồi :))

10 tháng 3 2019

thanks :))

11 tháng 9 2017

Sửa đề:

\(x=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)

\(=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{5\sqrt{5}-3.5.2+12\sqrt{5}-8}}{\sqrt{5}+\sqrt{9-6\sqrt{5}+5}}\)

\(=\dfrac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}\)

\(=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+\left(3-\sqrt{5}\right)}=\dfrac{1}{3}\)

Thế vô A ta được

\(A=\left(3.\dfrac{1}{3^3}+8.\dfrac{1}{3^2}+2\right)^{2018}=3^{2018}\)

\(x=\dfrac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+3-\sqrt{5}}=\dfrac{3}{3}=1\)

\(A=\left(3\cdot1+8\cdot1+2\right)^{2018}=13^{2018}\)

11 tháng 8 2017

ai nay dung kinh nghiem la chinh

cau a)

ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)

\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)

khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)

\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)

\(x=\frac{3-1}{1}=2\)

suy ra 

x^3-4x+1=1

A=1^2018

A=1

b)

ta thay

\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)

khi do 

\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)

\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)

x=2

thay vao

x^3+3x-14=0

B=0^2018

B=0

6 tháng 8 2015

\(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{\left(\sqrt{5}-2\right)^3}}{\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}}=\frac{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}{\sqrt{5}+3-\sqrt{5}}=\frac{1}{3}\)

17 tháng 8 2017

kết quả bằng bn ạ?