Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử hình lăng trụ có CD = 11mm; AB = 15mm; DH = 7mm.
Ta có: AH = (AB-CD)/2 = (15-11)/2 = 2mm
Áp dụng định lí Pi-ta-go vào tam giác vuông AHD, ta có:
A D 2 = A H 2 + H D 2 = 2 2 + 7 2
= 4 + 49 = 53
Suy ra: AD = 53 (mm)
Vì ABCD là hình thang cân nên BC =AD
Ta có: S x q = (AB +BC+ DC + AD).BB'
=(AB+DC+2AD) ).BB'
=(15+11+2 53 ).14
=(364 +28 53 ) ( m m 2 )
a. Thể tích là:
\(\frac{3x4}{2}\)x 9 = 54 cm3
Trong tam giác vuông ABC (vuông tại A), theo định lý Pytago, ta có cạnh huyền bằng:
\(\sqrt{3^2+4^2}\) = 5 cm
Diện tích xung quanh là:
(3 + 4 + 5) x 9 = 108 cm2
Diện tích toàn phần là:
108 + 3 x 4 = 120 cm2
b. Diện tích xung quanh là:
(3 + 4) x 2 x 5 = 70 cm2
Đáp số : 70 cm2
a) Sxq = 2.P.H (p: chu vi đáy; h: chiều cao)
= 3(3 + 3).4 = 48(cm2)
b) Gọi O là giao điểm của AC và BD. Vì tứ giác ABCD là hình thoi nên AC ⊥ BD tại O và có ∠ABC = 60o => ∠ABO = 30o
ΔABO là nửa tam giác đều nên
Áp dụng định lí Py - Ta - Go , độ dài cạnh còn lại của mặt đáy tam giác là :
\(\sqrt{3^2+4^2}=5\left(cm\right)\)
Diện tích xung quanh hình lăng trụ đứng :
\(S_{xq}=\left(3+4+5\right).8=96\left(cm^2\right)\)
Diện tích toàn phần :
\(S_{tp}=96+\left(3.4\right)=108\left(cm^2\right)\)
Thể tích :
\(V=\dfrac{3.4}{2}.8=48\left(cm^3\right)\)
Không thể tính được vì thiếu kích thước chiều cao hình thang nên ko tính được diện tích đáy