Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 2+2^2+2^3+2^4+...+2^100
2A=2^2+2^3+2^4+2^5+...+2^100+2^101
2A-A=(2^2+2^3+2^4+2^5+..+2^100+2^101)-(2+2^2+2^3+2^4+...+2^100)
A=2^101-2
A=2^100
B=1+3+3^2+3^3+...+3^2009
3B=3+3^2+3^3+3^4+...+3^2009+3^2010
3B+1=(1+3+3^2+3^3+3^4+...+3^2009)+3^2010
3B+1=B+3^2010
2B+1=3^2010
2B=3^2010-1
B=(3^2010-1):2
C=1+5+5^2+5^3+...+5^1998
5C=5+5^2+5^3+5^4+...+5^1998+5^1999
5C+1=(1+5+5^2+5^265^4+...+5^1998)+5^1999
5C+1=C+5^1999
4C+1=5^1999
4C=5^1999-1
C=(5^1999-1):5
D=4+4^2+4^3+...+4^n
4D=4^2+4^3+4^4+...+4^n+4^(n+1)
4D+4=(4+4^2+4^3+4^4+...+4^n)+4^(n+1)
4D+4=D+4^(n+1)
3D+4=4^(n+1)
3D=4^(n+1)-4
D=(4^(n+1)-4):3
Chơi câu khó nhất
D = 4 + 42 + 43 + ... + 4n
4D = 42 + 43 + ... + 4n+1
3D = 4n+1 - 4
D = \(\frac{4^{n+1}-4}{3}\)
a) 27.62 +27.38 = 27. ( 62 + 38 )
= 27 . 100
= 2700 .
b) 2.3^2 + 4.3 ^3 = 2.3^2 + 2. 2. 3^3
= 2 . ( 3 ^2 + 2 . 3 ^3 )
= 2 . ( 9 + 54 )
= 2 . 63 = 126 .
c ) 1972 - ( 368 + 972 ) = 1972 - 368 - 972
= 1000 - 368
= 632
d ) Số số hạng là :
( 99 - 1 ) : 2 +1 = 50 ( số )
Tổng trên bằng :
( 1 + 99 ) x 50 : 2 = 2475 .
Vậy : 1 + 3 + 5 + ... + 99 = 2475 .
a) -1 - 2 - 3 - 4 - 5 -.............- 2009 - 2010
SCSH: ( 2010 - 1 ) : 1 + 1 = 2010
tỔNG: ( 2010 + 1 ) . 2010 : 2 = 2021055
b) 1 - 3 + 5 - 7 +...............+ 2005 - 2007 + 2009 - 2011
SCSH: ( 2011 - 1 ) : 2 + 1 = 1006
tỔNG: ( 2011 + 1 ) . 1006 : 2 = 1012036
c) 1 - 2 - 3 + 4 + 5 - 6 - 7 +..........................+ 1997 - 1998 - 1999 + 2000 + 2001
SCSH: ( 2001 - 1 ) : 1 + 1 = 2001
tỔNG: ( 2001 + 1 ) . 2001 : 2 = 2003001
Hk tốt,
k nhé
a)(-5/7+5/7)+3/-5=3/-5
b) câu này mình chả hiểu biểu thức của bạn
c)-2/5-3/7+10/7+7/5
=5/5+7/7=2
2
a)l2x-6l=0
th1 2x+6=0
x=3
th2 -2x-6=0
x=-3
b)-3/4-x=1/5
-x=1/5+3/4=19/20
x=-19/20
k cho mình nhé
Vs lại mấy bài này rất dễ bạn suy nghĩ xíu nhé
\(A=\)\(1+5+5^2+5^3+...+5^{1998}\)
\(5A=5+5^2+5^3+5^4+...+5^{1999}\)
\(5A-A=\left(5+5^2+5^3+5^4+...+5^{1999}\right)-\left(1+5+5^2+5^3+...+5^{1998}\right)\)
\(4A=5^{1999}-1\)
\(\Rightarrow A=\frac{5^{1999}-1}{4}\)
\(B=4+4^2+4^3+...+4^n\)
\(4B=4^2+4^3+4^4+...+4^{n+1}\)
\(4B-B=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)
\(3B=4^{n+1}-4\)
\(\Rightarrow B=\frac{4^{n+1}-4}{3}\)
https://dethihsg.com/de-thi-hoc-sinh-gioi-phong-gđt-hoang-hoa-2014-2015/