K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2018

i wtan youm att jjjfdef the fifture haixx

12 tháng 4 2020

1. \(A=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}-\frac{-1}{6}+\frac{-4}{35}+\frac{1}{41}\)

\(=\frac{1}{2}-\frac{2}{5}+\frac{1}{3}+\frac{5}{7}+\frac{1}{6}-\frac{4}{35}+\frac{1}{41}\)

\(=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)-\left(\frac{2}{5}-\frac{5}{7}+\frac{4}{35}\right)+\frac{1}{41}\)

\(=\left(\frac{5}{6}+\frac{1}{6}\right)-\left(\frac{-11}{35}+\frac{4}{35}\right)+\frac{1}{41}\)\(=1-\frac{-7}{35}+\frac{1}{41}=1+\frac{1}{5}+\frac{1}{41}=\frac{251}{205}\)

2. a) \(1+4+4^2+4^3+......+4^{99}=\left(1+4\right)+\left(4^2+4^3\right)+.......+\left(4^{98}+4^{99}\right)\)

\(=\left(1+4\right)+4^2\left(1+4\right)+.........+4^{98}\left(1+4\right)\)

\(=5+4^2.5+........+4^{98}.5=5\left(1+4^2+.....+4^{98}\right)⋮5\)( đpcm )

b) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5=3^n.10-2^{n-1+1}.5=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)⋮10\)( đpcm )

27 tháng 2 2020

a) Ta có: \(A=\left(\frac{1}{2}-1\right).\left(\frac{1}{3}-1\right)...\left(\frac{1}{10}-1\right)=\frac{-1}{2}.\frac{-2}{3}...\frac{-9}{10}=\frac{-\left(1.2.3...9\right)}{2.3.4...10}=-\frac{1}{10}\)

b) Ta có : \(B=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)....\left(\frac{1}{100}-1\right)=\frac{-3}{4}.\frac{-8}{9}....\frac{-99}{100}=-\frac{3.8....99}{\left(2.3...10\right)\left(2.3...10\right)}\)

\(=-\frac{1.3.2.4...9.11}{\left(2.3....10\right)\left(2.3...10\right)}=\frac{\left(1.2.3...10\right).\left(3.4..10.11\right)}{\left(2.3...10\right).\left(2.3.4...10\right)}=\frac{11}{2}=5,5\)

c) Ta có : \(C=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{n+1}\right)=\frac{1}{2}.\frac{2}{3}...\frac{n}{n+1}=\frac{1.2...n}{2.3...\left(n+1\right)}=\frac{1}{n+1}\)

25 tháng 5 2015

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{n}\right)\)(n>=2)

\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{n-1}{n}\) 

\(=\frac{1\cdot2\cdot3\cdot...\cdot n-1}{2\cdot3\cdot4\cdot...\cdot n}\)(rút gọn đi)

\(=\frac{1}{n}\)

mk k chắc nữa

Chúc bạn học tốt!^_^