\(1+\dfrac{1}{1+2}+...+\dfrac{1}{1+2+3+...+n}\) tại n=2014
b,
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: 

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

\(\Leftrightarrow1-\dfrac{1}{n+1}=\dfrac{2999}{3000}\)

=>n+1=3000

hay n=2999

18 tháng 1 2019

ĐK: a > 0, a khác 1

\(M=\dfrac{a-1}{\sqrt{a}-1}=\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\sqrt{a}+1\)

\(N=\dfrac{a-1}{\sqrt{a}+1}=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}+1}=\sqrt{a}-1\)

\(P=\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}=a+\sqrt{a}+1\)

\(Q=\dfrac{a\sqrt{a}+1}{\sqrt{a}+1}=\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}+1}=a-\sqrt{a}+1\)

11 tháng 3 2017

Dạng tổng quát: \(\sqrt[k+1]{\frac{k+1}{k}}>\sqrt[k+1]{\frac{k+1}{k+1}}=1\) với k = 1; 2; 3; ...; n

=> \(a=\sqrt{2}+\sqrt[3]{\frac{3}{2}}+\sqrt[4]{\frac{4}{3}}+...+\sqrt[n+1]{\frac{n+1}{n}}>n\) (1)

Áp dụng bđt AM-GM cho k + 1 số dương ta có:

\(\sqrt[k+1]{\frac{k+1}{k}}=\sqrt[k+1]{1.1.1...1.\frac{k+1}{k}}< \frac{1+1+1+...+1+\frac{k+1}{k}}{k+1}=\frac{1.k}{k+1}+\frac{\frac{k+1}{k}}{k+1}\)

\(\Leftrightarrow\sqrt[k+1]{\frac{k+1}{k}}< \frac{k}{k+1}+\frac{1}{k}=1-\frac{1}{k+1}+\frac{1}{k}=1+\left(\frac{1}{k}-\frac{1}{k+1}\right)\)

\(< 1+\frac{1}{k\left(k+1\right)}\)

Áp dụng vào bài ta được:

\(a< \left(1+\frac{1}{1.2}\right)+\left(1+\frac{1}{2.3}\right)+\left(1+\frac{1}{3.4}\right)+...+\left(1+\frac{1}{n\left(n+1\right)}\right)\)

\(a< n+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)\)

\(a< n+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(a< n+\left(1-\frac{1}{n+1}\right)< n+1\) (2)

Từ (1) và (2) suy ra phần nguyên của a là n

17 tháng 7 2017

\(=>P=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)

CHÚC BẠN HỌC TỐT..........

27 tháng 8 2017

\(\Sigma\left(\dfrac{1}{\sqrt{x}+\sqrt{x+1}}\right)\) cho x chạy từ 2-2014

kq 43.47453781

10 tháng 8 2018

a,Điều kiện:x\(\ge\)0;x\(\ne\)1

=\(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(\times\)\(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

=\(\dfrac{\sqrt{x}-1_{ }}{\sqrt{x}}\)

b,<=>\(\dfrac{\sqrt{x}_{ }-1}{\sqrt{x}}\)=\(\dfrac{1}{3}\)

<=>3\(\sqrt{x}\)-3=\(\sqrt{x}\)

<=>2\(\sqrt{x}\)=3

<=>x=9/4

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

a)

\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{100}+\sqrt{101}}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{2}+\sqrt{1})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}+....+\frac{\sqrt{101}-\sqrt{100}}{(\sqrt{101}+\sqrt{100})(\sqrt{101}-\sqrt{100})}\)

\(S=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{101}-\sqrt{100}}{101-100}\)

\(S=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{101}-\sqrt{100}\)

\(S=\sqrt{101}-1\)

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

b)

\(S=\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+...+\frac{1}{\sqrt{100}+\sqrt{102}}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{(\sqrt{4}+\sqrt{2})(\sqrt{4}-\sqrt{2})}+\frac{\sqrt{6}-\sqrt{4}}{(\sqrt{6}+\sqrt{4})(\sqrt{6}-\sqrt{4})}+...+\frac{\sqrt{102}-\sqrt{100}}{(\sqrt{102}+\sqrt{100})(\sqrt{102}-\sqrt{100})}\)

\(S=\frac{\sqrt{4}-\sqrt{2}}{4-2}+\frac{\sqrt{6}-\sqrt{4}}{6-4}+....+\frac{\sqrt{102}-\sqrt{100}}{102-100}\)

\(S=\frac{\sqrt{4}-\sqrt{2}+\sqrt{6}-\sqrt{4}+\sqrt{8}-\sqrt{6}+...+\sqrt{102}-\sqrt{100}}{2}\)

\(S=\frac{\sqrt{102}-\sqrt{2}}{2}\)