Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)= 2021.2021-2020.(2021+1)
= 2021.(2020+1)-2020.(2021+1)
= (2021.2020)+2021-(2020.2021)-2020
= 1
b) B= (1+2-3-4)+(5+6-7-8)+(9+10-11-12)...........+(2017+2018-2019-2020)+2021
B= -4+(-4)+....................(-4)+2021
B= -4x505+2021
B= -2020 + 2021
B = 1
B = 22021 - 22020 - 22019 -...- 2 -1
B = 22021 - (22020 + 22019 +...+2 +1)
Đặt C = 22020 + 22019 +...+ 2 + 1
2C = 22021 + 22020 + 22019+....+ 2 + 1
2C - C = 22021 - 1
C = 22021 - 1
B = 22021 - (22021 -1)
B = 22021 - 22021 + 1
B = 1
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
\(a,\left(-5-13\right):\left(-6\right)=\left(-18\right):\left(-6\right)=3\)
\(b,12.15-3.5.10=12.15-15.10=15.\left(12-10\right)=15.2=30\)
\(c,1-3+5-7+9-11+...+2019-2020\)
\(=\left(1-3\right)+\left(5-7\right)+\left(9-11\right)+\dots+\left(2019-2020\right)\)
\(=\left(-1\right)+\left(-1\right)+\left(-1\right)+\dots+\left(-1\right)\) (có 1010 số -1)
\(=-1010\)
d, không biết làm :))
Lời giải:
$A=(-1-2+3+4)+(-5-6+7+8)+(-9-10+11+12)+...+(-2021-2022+2023+2024)-2024$
$=\underbrace{4+4+...+4}_{506}-2024$
$=4.506-2024=0$
1-2+3-4+5-6+...+2019-2020+2021
= (1-2) + (3-4) + (4-5) + ... + (2019-2020) + 2021
= -1 + (-1) + (-1) + ... + (-1) + 2021
= -1 . 110 + 2021
= -110 + 2021
=1911
HỌC TỐT !
\(1-2+3-4+5-6+...+2019-2020+2021\)
\(=\left(1+3+5+....+2021\right)-\left(2+4+6+...+2020\right)\)
\(=\left(\frac{\left(2021+1\right).1011}{2}\right)-\left(\frac{\left(2020+2\right).1010}{2}\right)\)
\(=\frac{2022.1011}{2}-\frac{2022.1010}{2}=\frac{2022}{2}=1011\)
...
\(B=\left(\dfrac{5}{2019}+\dfrac{4}{2020}-\dfrac{3}{2021}\right)\cdot\dfrac{3-2-1}{6}=0\)