K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2016

moi hok lop 6

12 tháng 2 2016

B=(1+99).99:2=4950

Nhớ t..i..c..k nha

4 tháng 7 2015

bạn biết cách giải rồi mà

4 tháng 7 2015

giải

     B=1+2+3+......+98+99
+

    B=99+98+.....+2+1


2B=100+100+...+100+100 = 100.99 = B = 50.99=4950

T

26 tháng 3 2017

(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)

=101+100+99+98+...+3+2+1

=101 . (101 + 2) : 2

=5151

101-100+99-98+...+3-2+1

=(101-100)+(99-98)+...+(3-2)+1

=1 + 1 + 1 + ... + 1

=101- 2 + 1
=100 : 2

=50 + 1

=51

(101 + 100 + 99 + 98 + ... + 3+2+1) / (101-100+99-98+...+3-2+1) = 5151/51 = 101

13 tháng 10 2018

bang 101

14 tháng 6 2019

Mình giải bừa :v
\(\frac{1}{99}-\frac{1}{98.99}-\frac{1}{97.98}-...-\frac{1}{2.3}-\frac{1}{1.2}\)

\(=-\left(\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{97.98}-\frac{1}{98.99}-\frac{1}{99}\right)\)

\(=-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}-\frac{1}{99}\right)\)
\(=-\left(1-\frac{1}{99}-\frac{1}{99}\right)\)

\(=-\frac{97}{99}\)

Hi vọng đúng :v

14 tháng 6 2019

Phân tích mẫu sau ta có :

\(\frac{99}{1}+\frac{98}{2}=+\frac{1}{99}+........=98+\frac{2}{1}+97+\frac{2}{1}\)

\(=>\left(1+99+1.....\right)+99+1\)

Vì ta bỏ phần tử đi nên cộng 1 vào phân số 99 do thế 99 vẫn đẳng thức được

\(\frac{100}{2}+\frac{100}{3}+.......\frac{100}{99}=100.\frac{1}{2}+\frac{1}{3}+....\frac{1}{99}\)

Do đó Đáp án sẽ là

=>\(100\)

(Bạn nên nhớ là ta cộng một lần nữa nhé)

~Hk tốt~

11 tháng 8 2016

Bằng 1

5 tháng 2 2017

Ta có: B= \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\)

  => \(\frac{1}{2}B=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{100}\)

  => B - \(\frac{1}{2}B=\left(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\right)\)

                          \(-\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{4}\right)^4+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{100}\right)\)

 => B - \(\frac{1}{2}B=\left(\frac{1}{2}+\left(\frac{1}{2}\right)^{99}\right)-\left(\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{100}\right)=\frac{1}{2}\)

  => B \(\times\left(1-\frac{1}{2}\right)=\frac{1}{2}\)

  => B = 1

Câu này chắc chắn đúng luôn

10 tháng 7 2016

Tổng trên có số số hạng là: 

    (99-1):1+1=99 (ssos hạng)

Tổng trên là: B=(99+1).99:2=4950

                Chúc bn học tốt!

10 tháng 7 2016

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

10 tháng 2 2020

B = 1 + (2 + 3 + 4 + ... + 98 + 99).

Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:

(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949

Khi đó B = 1 + 4949 = 4950

10 tháng 2 2020

Số số hạng của B là: (99-1):1+1= 99 (số hạng)

Ta có: B= (99+1). 99:2= 4950

Vậy B= 4950

 

15 tháng 7 2016

tón nâng cao nha

15 tháng 7 2016

áp dụng công thức tính dãy số ta có

(99 - 1) : 1 + 1     .    (99+1 ) : 2  

= 99 . 100 : 2 

= 4950

1 tháng 1 2020

ngu hay là giả ngu

1 tháng 1 2020

\(B=1+2+3+...+99\)

\(=\frac{99.\left(99+1\right)}{2}\)

\(=4950\)

hok tốt 

11 tháng 7 2016

vÌ CÓ tổng cộng 50 cặp số 

==>Ta có:

=(1+99)*50

=100*50

==>B= 5000

13 tháng 7 2016
Số số hạng là:( 99-1):1+1=99 Tổng B là (99+ 1)×99:2=4950