Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải
B=1+2+3+......+98+99
+
B=99+98+.....+2+1
2B=100+100+...+100+100 = 100.99 = B = 50.99=4950
T
(101+100+99+98+...+3+2+1)/(101-100+99-98+...+3-2+1)
=101+100+99+98+...+3+2+1
=101 . (101 + 2) : 2
=5151
101-100+99-98+...+3-2+1
=(101-100)+(99-98)+...+(3-2)+1
=1 + 1 + 1 + ... + 1
=101- 2 + 1
=100 : 2
=50 + 1
=51
(101 + 100 + 99 + 98 + ... + 3+2+1) / (101-100+99-98+...+3-2+1) = 5151/51 = 101
Mình giải bừa :v
\(\frac{1}{99}-\frac{1}{98.99}-\frac{1}{97.98}-...-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=-\left(\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{97.98}-\frac{1}{98.99}-\frac{1}{99}\right)\)
\(=-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}-\frac{1}{99}\right)\)
\(=-\left(1-\frac{1}{99}-\frac{1}{99}\right)\)
\(=-\frac{97}{99}\)
Hi vọng đúng :v
Phân tích mẫu sau ta có :
\(\frac{99}{1}+\frac{98}{2}=+\frac{1}{99}+........=98+\frac{2}{1}+97+\frac{2}{1}\)
\(=>\left(1+99+1.....\right)+99+1\)
Vì ta bỏ phần tử đi nên cộng 1 vào phân số 99 do thế 99 vẫn đẳng thức được
\(\frac{100}{2}+\frac{100}{3}+.......\frac{100}{99}=100.\frac{1}{2}+\frac{1}{3}+....\frac{1}{99}\)
Do đó Đáp án sẽ là
=>\(100\)
(Bạn nên nhớ là ta cộng một lần nữa nhé)
~Hk tốt~
Ta có: B= \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\)
=> \(\frac{1}{2}B=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{100}\)
=> B - \(\frac{1}{2}B=\left(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\right)\)
\(-\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{4}\right)^4+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{100}\right)\)
=> B - \(\frac{1}{2}B=\left(\frac{1}{2}+\left(\frac{1}{2}\right)^{99}\right)-\left(\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{100}\right)=\frac{1}{2}\)
=> B \(\times\left(1-\frac{1}{2}\right)=\frac{1}{2}\)
=> B = 1
Câu này chắc chắn đúng luôn
Tổng trên có số số hạng là:
(99-1):1+1=99 (ssos hạng)
Tổng trên là: B=(99+1).99:2=4950
Chúc bn học tốt!
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
áp dụng công thức tính dãy số ta có
(99 - 1) : 1 + 1 . (99+1 ) : 2
= 99 . 100 : 2
= 4950
vÌ CÓ tổng cộng 50 cặp số
==>Ta có:
=(1+99)*50
=100*50
==>B= 5000
B = 1 + (2 + 3 + 4 + ... + 98 + 99).
Ta thấy tổng trong ngoặc gồm 98 số hạng, nếu chia thành các cặp ta có 49 cặp nên tổng đó là:
(2 + 99) + (3 + 98) + ... + (51 + 50) = 49.101 = 4949
Khi đó B = 1 + 4949 = 4950
Số số hạng của B là: (99-1):1+1= 99 (số hạng)
Ta có: B= (99+1). 99:2= 4950
Vậy B= 4950