K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

VT = sin3a.cos^3a + sin^3a.cos3a 
= sin3a.cosa.cos^2a + sin^2a.sina.cos3a 
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin(-2a) + sin4a) 
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin4a - sin2a) 
= 1/2.sin2a.cos^2a + 1/2.sin4a.cos^2a + 1/2.sin^2a.sin4a - 1/2.sin^2a.sin2a 
= 1/2.sin2a.(cos^2a - sin^2a) + 1/2.sin4a.(cos^2a + sin^2a) 
= 1/2.sin2a.cos2a + 1/2.sin4a 
= 1/4.sin4a + 1/2.sin4a 
= 3/4.sin4a = VP 
=> đpcm

P/s: Chỉ sợ you ko hiểu

11 tháng 10 2017

tan a =2/3

=> đặt sin a = 2x thì cos a = 3x

rồi làm tiếp còn cách khác thì k biết làm

4 tháng 7 2016

Ta có: \(tan\alpha=3=\frac{sin\alpha}{cos\alpha}\Rightarrow sin\alpha=3cos\alpha\)

Suy ra: \(B=\frac{\left(sin\alpha-cos\alpha\right)\left(sin^2\alpha+cos^2\alpha+sin\alpha.cos\alpha\right)}{\left(sin\alpha+cos\alpha\right)\left(sin^2\alpha+cos^2\alpha-sin\alpha.cos\alpha\right)}\)

\(=\frac{2cos\alpha.\left(1+3cos^2\alpha\right)}{4cos\alpha.\left(1-3cos^2\alpha\right)}=\frac{1+3cos^2\alpha}{2.\left(1-3cos^2\alpha\right)}\)

4 tháng 7 2016

khó quá chị ơi

18 tháng 6 2016

sin3x=sin(2x+x)=sin2xcoxx+cox2xsinx 
=2sinxcox^2 x+(1-2sin^2 x)sinx 
=2sinxcox^2 x+ sinx-2sin^3 x 
=sinx(2cos^2 x +1) - 2sin^3 x 
=sinx(2-2sin^2 x +1) - 2sin^3 x 
=3sinx - 4 sin^3 x. 
cos3x=cox(2x+x)=cos2xcosx-sin2xsinx 
=(2cos^2 x-1)cosx-2sin^2 xcosx 
=2cos^3 x-cosx-(2-cos^2 x)cosx 
=2cos^3 x -cosx-2coxx+2cos^3 x 
=4cos^3 x - 3cosx. 

=> tan 3a= sin3a/cos3a rồi ra

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

NV
16 tháng 9 2019

\(cosa.sina=\frac{1}{5}\Rightarrow\frac{cosa.sina}{sin^2a}=\frac{1}{5sin^2a}=\frac{sin^2a+cos^2a}{5sin^2a}\)

\(\Rightarrow\frac{cosa}{sina}=\frac{1}{5}+\frac{1}{5}.\frac{cos^2a}{sin^2a}\)

\(\Rightarrow cota=\frac{1}{5}+\frac{1}{5}cot^2a\)

\(\Rightarrow cot^2a-5cota+1=0\)

\(\Rightarrow cota=\frac{5\pm\sqrt{21}}{2}\)

NV
16 tháng 9 2019

Câu 2:

\(\frac{cosa}{1-sina}=\frac{cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa\left(1+sina\right)}{1-sin^2a}=\frac{cosa\left(1+sina\right)}{cos^2a}=\frac{1+sina}{cosa}\)

b/

\(\frac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}\)

\(=\frac{sin^2a+cos^2a+2sina.cosa-\left(sin^2a+cos^2a-2sina.cosa\right)}{sina.cosa}\)

\(=\frac{4sina.cosa}{sina.cosa}\)

\(=4\)