Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: A = 23 + 43 + 63 + ... + 983 + 1003 = 23*(13 + 23 + 33 + ... + 493 + 503) = 23 * 1/4 * 502 * 512 = 13005000.
Bài 2: Xét hiệu:
\(\frac{10^{2015}-1}{10^{2014}-1}>\frac{10^{2014}-1}{10^{2014}-1}=1=\frac{10^{2014}+1}{10^{2014}+1}>\frac{10^{2014}+1}{10^{2015}+1}.\)
Bài 1: Tính:
A=23+43+63+...+983+1003
=22.(12+22+32+...+492+502)
=22.[1+2(1+1)+3(2+1)+...+99(98+1)+100(99+1)]
A = 22 [1+1.2+2+2.3+3+...+98.99+99+99.100+100]
A =22 [(1.2+2.3+3.4+...+99.100)+(1+2+3+...+99+100)]
..................tự tiếp nha
\(S=1+3+3^2+3^3+...+3^{2014}\)
\(3S=3+3^2+3^3+3^4+...+3^{2015}\)
\(3S-S=\left(3+3^2+3^3+3^4+...+2^{2015}\right)-\left(1+3+3^2+3^3+...+3^{2014}\right)\)
\(2S=3^{2015}-1\)
\(S=\frac{3^{2015}-1}{2}\)
Lời giải:
$S=3^0+3^2+3^4+...+3^{2014}$
$3^2S=3^2+3^4+3^6+...+3^{2016}$
$\Rightarrow 3^2S-S=3^{2016}-3^0$
$\Rightarrow 8S=3^{2016}-1$
$\Rightarrow S=\frac{3^{2016}-1}{8}$
b.
$S=(3^0+3^2+3^4)+(3^6+3^8+3^{10})+....+(3^{2010}+3^{2012}+3^{2014})$
$=(1+3^2+3^4)+3^6(1+3^2+3^4)+...+3^{2010}(1+3^2+3^4)$
$=(1+3^2+3^4)(1+3^6+...+3^{2010})=91(1+3^6+...+3^{2010})$
$=7.13(1+3^6+...+3^{2010})\vdots 7$.
\(A=\frac{11.9^{11}.3^7-27^{10}}{\left(2.3^{14}\right)^2}\)
\(A=\frac{11.3^{22}.3^7-3^{30}}{2^2.3^{28}}\)
\(A=\frac{11.3^{29}-3^{30}}{4.3^{28}}\)
\(A=\frac{3^{29}.\left(11-3\right)}{4.3^{28}}\)
\(A=\frac{3.8}{4}\)
\(A=\frac{24}{4}\)
\(A=6\)
vậy \(A=6\)
học tôt Ngô Thị Diệu Linh