Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: A = 23 + 43 + 63 + ... + 983 + 1003 = 23*(13 + 23 + 33 + ... + 493 + 503) = 23 * 1/4 * 502 * 512 = 13005000.
Bài 2: Xét hiệu:
\(\frac{10^{2015}-1}{10^{2014}-1}>\frac{10^{2014}-1}{10^{2014}-1}=1=\frac{10^{2014}+1}{10^{2014}+1}>\frac{10^{2014}+1}{10^{2015}+1}.\)
Bài 1: Tính:
A=23+43+63+...+983+1003
=22.(12+22+32+...+492+502)
=22.[1+2(1+1)+3(2+1)+...+99(98+1)+100(99+1)]
A = 22 [1+1.2+2+2.3+3+...+98.99+99+99.100+100]
A =22 [(1.2+2.3+3.4+...+99.100)+(1+2+3+...+99+100)]
..................tự tiếp nha
Bài 1:
a) Đặt A = 1 + 7 + 72 + 73 + ... + 72016
7A = 7 + 72 + 73 + 74 + ... + 72017
7A - A = (7 + 72 + 73 + 74 + ... + 72017) - (1 + 7 + 72 + 73 + ... + 72016)
6A = 72017 - 1
\(A=\frac{7^{2017}-1}{6}\)
b) Đặt B = 1 + 4 + 42 + 43 + ... + 42017
4B = 4 + 42 + 43 + 44 + ... + 42018
4B - B = (4 + 42 + 43 + 44 + ... + 42018) - (1 + 4 + 42 + 43 + ... + 42017)
3B = 42018 - 1
\(B=\frac{4^{2018}-1}{3}\)
Bài 2:
a) Ta có: \(14\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}\equiv1\left(mod13\right)\)
\(\Rightarrow14^{14}-1⋮13\left(đpcm\right)\)
b) Ta có: \(2015\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}\equiv1\left(mod2014\right)\)
\(\Rightarrow2015^{2015}-1⋮2014\left(đpcm\right)\)
Sorry mình thiếu 1+7+72+73+...+72016 câu dưới cũng thiếu 4 nha
A=1+2+22+23+.....+22014
=>2A=2+22+23+.....+22015
=>2A-A=22015-1
=>A=22015-1
=>B-A=22015-(22015-1)=1
a, 1+2+3+....+20165
số hạng của dãy trên là :
( 20165 - 1 ) : 1 + 1 = 20165 ( số )
tổng dãy trên là :
( 20165 + 1 ) . 20165 : 2 = 203323695
Đáp số : ...
b, 1*2+2*3+3*4+...+1001*1002
gọi A là tên biểu thức trên
ta có : A = 1*2+2*3+3*4+...+1001*1002
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 1001.1002.3
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ... + 1001.1002 . ( 1003 - 1000 )
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 1001.1002.1003 - 1000.1001.1002
3A =1001.1002.1003
A = ( 1001.1002.1003 ) : 3
A = 335337002
tương tự